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Abstract 

Laser scanning of transportation aggregate materials provides a means to identify aggregate 

types, sources, and quality in near real-time. The Transportation Pooled Fund (TPF) effort 

described in this report began as a sequel to a TRB IDEA Program proof of concept laboratory 

study in 2012, and culminated in the development of the first commercial laser scanning system 

for transportation aggregate. This system is currently in operation at the Kansas Department of 

Transportation materials testing laboratory in Topeka, Kansas.  

The results of this TPF effort demonstrate that laser scanning technology can provide new 

rapid testing quality control and assurance procedures (not possible using classical aggregate 

testing methods), thereby enhancing the overall quality of the aggregate resources used in products 

that make-up the transportation infrastructure. The technology employed is based on a process 

referred to as Laser Induced Breakdown Spectroscopy (LIBS). In this process, a high-powered 

laser pulse is used to excite atoms that make up the minerals of the aggregate. This excitation 

results in the emission of light over a range of unique wavelengths (spectrum) that can be used to 

identify or fingerprint the targeted material. Pattern matching and modeling spectral fingerprints 

provides the means to identify aggregate types and their engineering properties.  

The wide applicability of the laser scanning technology was demonstrated by the analyses 

that were performed for the four state transportation agencies that participated in this TPF study: 

Kansas, New York, Ohio, and Maryland. The focus of the Kansas effort was to determine whether 

laser scanning could be used to predict D-cracking aggregate susceptibility and whether production 

blends could be evaluated to ensure that the source aggregate materials were all derived from 

approved sources. The focus of the New York effort was to determine whether laser scanning 

could be used to predict acid insoluble residue test results. The focus of the Ohio effort was to 

determine whether laser scanning could be used to predict the percentage of reactive chert and 

shale in a parent aggregate material. The focus of the Maryland effort was to determine whether 

laser scanning could be used to identify the quarry source of unknown aggregate materials; and 

whether laser scanning could be used as a surrogate to predict British Pendulum Number and 

Dynamic Friction Value test methods used to quantify aggregate friction properties.   
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Executive Summary 

Laser scanning is a spectroscopic analytical tool that offers the potential for rapid cost-

effective characterization of aggregate types and their engineering properties. The technology is 

based on a process that couples a high-powered laser pulse with a target aggregate material. This 

coupling induces a light emission that contains information that defines the micro-geochemical 

structure of the target material. The micro-geochemical information is encoded in the spectrum of 

the light emission, which can be captured and analyzed. The captured spectra in turn can be used 

to generate predictive models that can be employed as a means to monitor the quality of aggregate 

materials used in roadway and building construction. 

This report presents a description of this technology and the findings and conclusions of 

Transportation Pooled Fund Study TPF-5(364). As part of this study, aggregate from four 

participating State transportation agencies were supplied to the Chesner Engineering PC laser 

scanning laboratory, located in Coeymans, New York, for analysis. The four participating State 

agencies included the Kansas Department of Transportation (KDOT), the New York State 

Department of Transportation (NYSDOT), the Ohio Department of Transportation (ODOT), and 

the Maryland State Highway Administration (MDSHA).  

The objectives of the study were to examine the efficacy of models generated by scanning 

State DOT supplied aggregate materials and evaluating the results in relation to practical quality 

control issues facing each participating state. Each participating agency defined the specific 

objectives for the investigation. For example, KDOT focused on the use of scanning to 

differentiate D-cracking susceptible aggregate from non-susceptible aggregate; and to characterize 

the identity of aggregates in a blended production mixture. NYSDOT focused on the use of the 

technology as a surrogate for acid insoluble residue testing. ODOT focused on the use of laser 

scanning to identify the presence and content of chert and shale materials in ODOT aggregate; and 

MDSHA focused on the potential for laser scanning to identify the specific quarry source(s) of an 

unknown aggregate sample; and whether scanning could be used as a surrogate for British 

Pendulum and Dynamic Friction Value testing. 

In addition to a description of the findings and conclusions of each State study, the report 

reviews the almost decade-long hardware and software developmental history of the laser scanning 

system, which began with a Transportation Research Board (TRB) IDEA Program proof of 
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concept study in 2012. This was followed by several intermediate prototype development and 

demonstration efforts culminating with this TPF effort report. It includes a description of the 

physical hardware and integrated software developed to enable the targeting of aggregate samples, 

and the real-time processing and analysis of the spectral data generated. A conceptual discussion 

is provided of the types of models used to transform the spectral data into formats that could be 

used to predict aggregate quality. This is to provide DOT engineers and geologists with basic 

information on the nature of such models and how they process the spectral data.  

To facilitate the review of each State’s laser scanning and analytical effort, the laser 

aggregate scanning and evaluation efforts for each participating State are presented in four separate 

chapters within the report:  

• Chapter 3: Kansas Laser Scanning Analysis, 

• Chapter 4: New York Laser Scanning Analysis, 

• Chapter 5: Ohio Laser Scanning Analysis, and  

• Chapter 6: Maryland Laser Scanning Analysis. 

The KDOT studies revealed that  

• Laser scanning may be used as a quality control tool to identify D-cracking 

susceptible aggregate. 

• To achieve this objective local quarry and/or geologic member models will 

need to be calibrated for local KDOT aggregate sources. 

• Laser scanning can be used to screen production sample mixtures to ensure 

that only approved materials are introduced into production sample blends. 

The NYSDOT studies revealed that  

• When proper samples are selected for calibration AIR models are highly 

predictive and can be used as a surrogate for New York’s Acid Insoluble 

Residue Testing Procedure. 

• Development of such models requires that close attention be given to 

sample selection during model calibration to ensure that the calibrated 

sample data will represent the test sample population. 
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The ODOT studies revealed that  

• Laser scanning can be used as a quality control tool to identify chert and/or 

shale in ODOT aggregate at low concentration levels defined in ODOT 

specifications. 

• Statewide Chert and Shale Models can effectively predict chert or shale 

content.  

The MDSHA studies revealed that  

• Laser scanning can be used to identify the quarry source of unknown 

aggregate samples used in Maryland highway applications. 

• Laser scanning models can be used as a surrogate to predict DFV values of 

carbonate and noncarbonate aggregate.  

The findings and conclusions presented in this report illustrate the untapped potential of 

the laser scanning process. In addition to the properties focused on in this report, there seems to be 

little reason why other material properties could not be simulated. Employing and operating the 

Sample Laser Targeting (SLT) System does not require any special knowledge of spectroscopy or 

lasers to operate. The embedded operational and modeling software is run via a Graphical User 

Interface (GUI) that requires no special knowledge of software or the mechanical operation of the 

system. 

The realization of laser scanning as a transportation agency quality control tool, however, 

will require a major effort in the development of a spectral database to classify and associate the 

geochemical properties of a state’s aggregate resources with known engineering properties. This 

is a substantial undertaking that could potentially require years of sample collection, scanning, and 

traditional testing to characterize aggregate quality from its quarry resources. Those agencies with 

the resources to pursue the development will be at the forefront of aggregate QC/QA programs in 

the 21st century. 

In December 2021, the Kansas Department of Transportation (KDOT) became the first 

State Agency in the nation to install a scanning system in its State-run materials laboratory. By 

installing such a system in its own laboratory KDOT presently has the means to expand the 

potential for characterizing its own aggregate resources, and to uniquely address the issues that are 

most pressing to KDOT.  
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Chapter 1: Introduction 

1.1 Background 

In April 2012, the Transportation Research Board (TRB) published the results of the first 

documented study in the US that examined and demonstrated the feasibility of using laser scanning 

to identify and characterize aggregate materials used in highway construction (Chesner & 

McMillan, 2012). This study was conducted using a bench scale laser system located in the 

Department of Geology at New Mexico State University (NMSU). A photograph of the system 

used in the 2012 study is shown in Figure 1.1. 

 

 
Figure 1.1: NMSU Bench Laser Scanning System 

 

The process used is referred to in the scientific literature as Laser-Induced Breakdown 

Spectroscopy (LIBS). The LIBS process uses a highly energetic laser pulse to heat and excite the 

atoms in a localized, high-energy, plasma plume. In such a plasma state, electrons in the target 

material (aggregate-rock microstructure) will transition from lower to higher energy levels and 

emit light at intensities and wavelengths characteristic of the atoms and ions present in the plasma. 

The wavelengths and intensities associated with the light emission generate a spectrum that can be 

recorded and analyzed. A spectrum is a graphical representation of the relative intensities of the 

detected radiation, plotted from the shortest wavelength to the highest wavelengths. The magnitude 

of the detected intensities reflects the elemental and underlying mineralogical composition of the 

aggregate target material. A spectrum of a Kansas limestone is shown in Figure 1.2. 
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Since the microstructure of even one aggregate particle can be expected to exhibit a great 

deal of chemical heterogeneity, each laser shot will generate a unique spectral pattern. A composite 

of many laser shots will generate a pattern that captures a distribution of the individual spectrum 

for a given sample, and an average or composite spectrum. This composite spectrum can be 

described as a “spectral-pattern or fingerprint” of the analyzed aggregate.1  

 

 
Figure 1.2: Kansas Limestone Spectrum 

 

The idea of fingerprinting aggregate materials using laser scanning conceptually opens the 

possibility of comparing the underlying chemical makeup of these aggregates. By pattern matching 

the various spectra generated, each aggregate can be classified into groupings. Aggregates with 

similar spectral output can be expected to group into categories that exhibit similar engineering 

properties. Conversely, dissimilar spectra suggest dissimilar properties. The spectral patterns can 

be effectively employed to determine whether an unknown aggregate is derived from a known 

source. For example, if an unknown aggregate exhibits a spectral fingerprint that differs from a 

known aggregate source, it is highly unlikely that the unknown aggregate was derived from that 

source. Conversely, similar spectra would suggest that the aggregate came from the same source.  

 
1 The overall heterogeneity encountered is actually a function of both the chemical heterogeneity of the rock structure and the 
statistical heterogeneity inherent in the plasma morphology, which varies with each laser shot. 
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The engineering properties of transportation aggregate are dependent on the physical, 

chemical, and mechanical properties of the manufactured product. Many deleterious properties of 

aggregate are also dependent on the transportation environment into which they are placed. As a 

result, there is no guarantee that spectral emissions, which mostly capture the underlying chemical 

composition of the aggregate, will directly correlate with all engineering properties. Validation 

studies are necessary to determine the effectiveness of this approach. Nonetheless as will be shown 

in this report, in most cases, validation testing yields extremely positive results.2 

Multivariate numerical methods are needed to process the quantity of information 

embedded in a typical spectral pattern, and to group and classify aggregate types and correlate 

spectral patterns with engineering properties. These methods are used to calibrate multivariate 

models that provide the means to predict the quality of an unknown target aggregate. The 

technology does not require any special sample pre-processing. Once a sample is collected it can 

be scanned almost immediately and the property of interest predicted by the calibrated models.  

Given the above, the successful deployment of laser scanning technology could have far-

reaching quality control ramifications. It could provide the means for State transportation agencies 

to rapidly screen (in near real-time) materials to: 

• Identify the quarry source or localized bed source  

• Determine whether the material meets existing specifications 

• Validate whether a production sample contains pre-approved mixtures  

• Permit rapid and ongoing classification of quarry sources 

• Identify and quantify the content of deleterious material in an aggregate 

source 

Further interest in the 2012 effort led to a follow-on TRB funded study designed to support 

the development of a field prototype. In the NMSU bench scale system, shown in Figure 1.1, each 

aggregate particle in a small sample was independently analyzed one laser shot at a time. An 

upscaled prototype was deemed necessary to provide the means to rapidly scan large aggregate 

sample sets to address the heterogeneity inherent in aggregate samples; and to develop software 

 
2 A spectral emission can be expected to capture both chemical and, in part at least, the physical characteristics since the emission 
represents a signal of the solid and gaseous (e.g., pore space) composition of the aggregate. 
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capable of processing the scanned data and convert the data into outputs that apply to transportation 

applications. This effort was described in Chesner and McMillan (2015).  

A photograph of the first commercial prototype, referred to as the Sample Laser Targeting 

(SLT) system, is shown in Figure 1.3.3 To process the thousands of spectra generated during a 

laser scanning process, development of specialized software for use with the SLT was also deemed 

necessary. This software is referred to by the acronym SAM, which is short for Sample Analytical 

Module. SAM was developed to collect spectral data from every laser shot on the fly and input 

these data to pre-calibrated models to predict the quality of the aggregate immediately after 

scanning is completed.  

 

 
Figure 1.3: First SLT Prototype (2015) 

 

The successful completion of the aforementioned proof of concept and prototype 

development efforts provided sufficient incentive to pursue the planning and implementation of 

two Transportation Pooled Fund (TPF) studies. These pooled funded efforts were designed to 

explore in greater detail the practical aspects of employing laser scanning as a quality control tool 

in the transportation industry. At the completion of the first TPF, major modifications were made 

to the SLT to correct hardware deficiencies observed in the first TPF study. The upgraded SLT 

was used in the second study. The results of the first TPF study is described in Chesner and 
 

3 This prototype was installed and operated at the Callanan Quarry site in South Bethlehem, New York. 
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McMillan (2016). The results of the second TPF study, which was executed over the period of 

2018 to 2020, are the subject of this report.  

At the present time, the Kansas Department of Transportation (KDOT) has become the 

first agency in the nation to employ laser scanning in a state transportation laboratory. An SLT 

system is currently in operation at KDOT’s materials laboratory in Topeka, Kansas. 

1.2 Objectives and Scope 

Transportation Pooled Fund Project TPF-5(364) was initiated in early 2018 with four 

actively participating agencies. These included Kansas, New York, Ohio, and Maryland.4. The 

primary objective of the effort was to determine how effectively the second-generation SLT could 

predict the quality of respective state aggregates and to advance modeling and evaluation efforts. 

Each State agency had uniquely defined objectives: 

• Kansas Department of Transportation (KDOT):  

Determine whether laser scanning could be used to predict D-cracking aggregate 

susceptibility and whether production blends could be used to validate source 

materials used in aggregate production.  

• New York State Department of Transportation (NYSDOT): 

Determine whether laser scanning could be used to predict acid insoluble residue 

test results.  

• Ohio Department of Transportation (ODOT): 

Determine whether laser scanning could be used to predict the percentage of 

reactive chert and shale in a parent aggregate material.  

• Maryland Department of Transportation State Highway Administration (MDSHA): 

Determine whether laser scanning could be used to predict the source of unknown 

aggregate materials; also, to predict friction properties of MD aggregates. 

The scope of work involved the collection of aggregate samples by each participating State 

agency and the transport or shipment of the samples to the Chesner Engineering Laser Research 

lab, located at the Port of Coeymans Marine Terminal in Coeymans, New York. Samples were 

 
4 New Mexico and Oklahoma were part of the Pooled Fund Effort, but staffing issues prevented their full participation. 
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delivered in 6- x 12-inch cylinders, shown in Figure 1.4. Each cylinder was labelled with a Sample 

ID and contained 15 to 20 lbs of aggregate for scanning. The number of samples received, and the 

source of the samples was controlled by each State agency. Additional discussions on sample 

collection are discussed in each respective State chapter. 

 

 
Figure 1.4: Sample Cylinders from MDSHA 

 

In addition, each State provided information on the sample source, sample lithology, and 

engineering test data that was used to characterize the sample. These data were compiled into a 

computerized database that was integrated into the SAM laser scanning software previously 

described. All samples received were scanned several times. The typical scan involved 

approximately 1500 laser shots. Each scan generated a spectrum, which was associated with a 

particular Sample ID. These data were also stored in the database. The integrated database 

generated over the course of the project provided the means to develop predictive aggregate quality 

models for each State. A description of the laser system developed to scan the aggregate, the 

procedures used to develop the calibration models, and the findings and conclusions of the research 

are all described in this report.   
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Chapter 2: The Sample Laser Targeting (SLT) System 

Chapter 2 includes a description of the equipment and operations of the laser targeting 

system developed by the Research Team for aggregate scanning. It also includes a description of 

spectral data processing steps that were employed to translate a laser-induced-spectra into an 

output that predicts aggregate properties.  

2.1 SLT System: Design and Operations  

Theoretically, Laser Induced Breakdown Spectroscopy (LIBS) during the early stages of 

the technology evaluation appeared to be an ideal process for monitoring transportation aggregate. 

Samples can be scanned as-received with no pre-processing requirements and results can be 

obtained in near real-time. Practically however, providing a physical system capable of scanning 

aggregate is another matter. An effective laser-aggregate scanning system must be capable of:  

• Coupling laser light with an aggregate sample; 

• Scanning as much of an aggregate sample as possible; 

• Collecting the emitted light and storing the spectral data; and 

• Processing the spectral data to predict the quality of the scanned sample.  

In addition, all of this must be accomplished in a manner that: 

• Addresses the physical and mineralogical heterogeneity of aggregate 

samples; 

• Simplifies aggregate handling procedures in a materials laboratory 

environment; 

• Mitigates the potential impact of dust on the optical components and laser 

light;  

• Minimizes the duration of the scanning procedure; and  

• Generates results in near real-time. 

The first-generation SLT prototype lacked the means to adequately accomplish all of the 

aforementioned objectives.5 The second-generation SLT, which was designed and fabricated for 

 
5 In particular this included the inability to adequately control dust; and provide for a controlled interaction between the laser and 
the target aggregate material. 
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this TPF effort, required the development of novel hardware and integrated software to control 

SLT laser scanning operations and to process the data generated in the process.  

The defining feature of the second generation SLT is the aggregate sample chamber. The 

sample chamber, shown in Figure 2.1, houses a sample tray, a rotating turntable and linear drive 

designed to rotate the tray around its center axis and linearly along its radial axis; and to linearly 

move the sample tray in and out of the sample chamber.6 

The chamber is equipped with a dust suppression system that evacuates dust from the 

chamber on a continual basis during laser operations and prevents dust from entering and 

interfering with the laser path between the laser and the target material. Transparent safety glass 

windows enable the SLT operator to observe the sample chamber during operations.7 

 

 
Figure 2.1: SLT Sample Chamber 

 

The sample tray, which can be removed from the sample chamber, is used as the sample 

container. Prior to scanning, the tray is filled with the target aggregate and inserted onto the 

turntable. Different sized sample trays can accommodate aggregate samples weighing 1 pound up 

to 20 pounds. No other sample pre-processing is necessary. The turntable and linear drive are 

programmed to move the samples under the laser, which can be programmed to fire at the 

 
6 The sample tray shown in the figure is 20-inches in diameter. 
7 The Nd-YAG Laser used in the SLT is a Class IV 1064 nm laser. The chamber safety glass prevents eye exposure to the 1064 nm 
radiation. 
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aggregate at repetition rates from 1 to 10 Hz for any duration necessary to achieve a defined 

number of laser shots on the target material. 

The Figure 2.2 schematic below, shows a conceptual view of an Nd-YAG laser emitting a 

high-powered laser beam at a wavelength of 1064 nm. The beam is directed through a reflecting 

mirror and focusing lens at the sample tray that contains the sample aggregate material.8 The high 

power associated with the laser generates a plasma that emits light back to a fiber optic cable that 

transmits the light to a seven-channel spectrometer and charged coupled detector (CCD). The 

spectrometer resolves the light into its component wavelengths and the CCD transfers the 

information electronically to a computer for storage and analysis. 

 

 
Figure 2.2: SLT Scanning Process 

 

 
8 The type of laser used in the SLT is an Nd:YAG laser (neodymium-doped yttrium aluminum garnet) laser; Nd:Y3Al5O12 is a 
crystal that is used as a lasing medium for select solid-state lasers. 
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Figure 2.3: SLT Hardware Components 

 

The SLT system components are contained in two cabinets: an upper cabinet and a lower 

cabinet. The upper cabinet, which is maintained at positive pressure to prevent any ambient dust 

from entering, houses the laser and the optical train, which consists of mirror and lenses to direct 

the laser beam to the target aggregate situated in the sample chamber. The lower cabinet houses 

the power supply, programmable logic controller, compressor, and vacuum system, which collects 

all dust generated in the sampling chamber. 

Figure 2.3 is a photograph of the sample tray table extracted from the sample chamber 

accompanied by a photograph that shows the SLT with labels to identify the various components 

making up the system. 

2.2 Laser-Aggregate Coupling and Signal to Noise Ratio Screening 

Coupling a laser beam with an aggregate sample is not trivial. The focal point of the beam 

must coincide with the surface of the aggregate. Ideally, this surface should be normal to the beam. 

In a bench scale laser system, where each particle is individually scanned, focusing and particle 

orientation can be manually adjusted. In a field system, designed to scan many particles to capture 

the heterogeneity of the sample, manual adjustment of each sample particle is not realistic. The 
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SLT sampling tray provides a fixed elevation for the sample, which enables the focal point to be 

determined for a downward pointing laser beam (see Figure 2.2). However, particle orientation is 

random and there is no control over interparticle void spaces resulting from the angular 

configuration of aggregate compacted into a sample tray. Figure 2.4 is an overhead view of an 

aggregate sample tray; the same view a laser beam has rushing toward the sample. 

 

 
Figure 2.4: Ohio Coarse Aggregate in SLT Sample Tray 

 

A laser firing at 3 hertz at the tray will couple with the surface of the particles at numerous 

incident angles relative to the normal. The result is that the light emissions induced by the coupling 

reaction will deflect in many directions. Optimum light capture can be expected for laser shots that 

deflect the emitted light along the reverse path of the incoming laser beam. Lower intensities will 

occur for all other deflection angles. In addition, the interparticle void space between the particles 

means that a non-significant fraction of laser shots will not couple with the surface of the sample 

particles. This will also affect the intensity of the emission detected. The combined effect is that a 

high fraction of laser shots will result in low intensity emissions. These low intensity emissions 

will adversely affect the accuracy of the detected spectra. 

To overcome these limitations, specially developed algorithms were incorporated into the 

SLT data processing software to analyze each laser shot to determine the suitability of each laser 

shot for analysis. This algorithm looked at the Signal to Noise Ratio (SNR) of specially selected 

wavelengths associated with each spectrum. An SNR below a pre-selected threshold value would 
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filter out the laser shot from subsequent spectral analysis. The SNR was used as a screen to detect 

and eliminate low intensity emissions from the data collected.9 

2.3 Spectral Line Analysis  

A full spectral signal generated by each laser pulse in the SLT encompasses a range of 

wavelengths extending from approximately 188 to 980 nanometers (nm). The full spectral signal, 

however, may not in all cases be the optimal signal for characterizing specific aggregate properties. 

In these instances, a “Line Analysis” may be more effective. 

A Line Analysis is a spectral screen that is designed to reduce the number of wavelengths 

(lines) in the spectral signal used in the predictive model analysis. Figure 2.5 illustrates the 

difference between a full spectrum and selected lines embedded in the spectra. The top portion of 

the figure represents a full spectral signal and the bottom portion, a partial signal, which is a small 

subset of the wavelengths embedded in the full spectral signal.  

Line analysis provides a tool that can isolate wavelengths that yield a spectral pattern that 

could be more effective in achieving the desired modeled output in a given analysis.10 Line analysis 

was employed in several instances in the analyses presented in this report; particularly in the Ohio 

modeling effort. 

Several other spectral normalization and data transformation techniques were also 

employed to modify or transform the raw spectral data; with the intent of improving model 

resolution and prediction efficiency. These specific techniques are discussed in the State-specific 

sections of this report, where they were applied. 

  

 
9 For most samples this resulted in approximately 35 to 70 percent of all laser shots being discarded from the analysis. 
10 A reduced number of significant spectral lines, which are most important to the model can, in certain cases, increase model 
resolution.  
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Figure 2.5: Full Spectra vs Line Analysis 

2.4 Multivariate Chemometric Models 

An aggregate spectral pattern, similar to the Kansas limestone pattern illustrated in Figure 

1.2, is the result of recorded emission intensity measurements of approximately 1500 laser shots. 

Each shot comprises approximately 14,336 different wavelengths, ranging from the near-

ultraviolet to the near-infrared range.11 Many laser shots are required to capture the chemical 

heterogeneity of a single aggregate sample. It is impractical to manage and analyze the quantity of 

data generated during laser scans without the assistance of specialized data management software. 

In addition, to discriminate between and among the spectral patterns generated by the variety of 

aggregates tested, special mathematical modeling techniques are needed. These techniques fall 

into a broad category commonly referred to as multivariate analysis. When chemical composition 

and in particular spectral data are employed as input data, the models are commonly referred to as 

multivariate chemometric models. A detailed description of multivariate chemometric methods is 

provided by Geladi (2003) and Geladi et al. (2004). Kramer (1998) provides a general description. 

Dunn (2022) provides a useful online description. 

 
11 The 14336 wavelengths span the light spectrum from the near ultraviolet range to the near infrared range: from approximately 
188 nm to 980 nm in ~+/- 0.02 nm bins. This represents 14336 separate variables that are included in the analyses. 
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Two specific modeling methods were employed in this investigation. The first is referred 

to as Principal Component Analysis (PCA) and the second Partial Least Squares Regression 

(PLSR). There are numerous sources that describe these methods. Jaadi (2021) and Sartorius AG 

(2020) provide general descriptions of these methods. Clegg et al. (2009) provide a detailed 

description of PLSR use in LIBS applications. Numerous software packages also exist that enable 

analysts to practically employ these methods. Some of these include MATLAB, Unscrambler, 

SIMCA, SPSS, Smart PLS, and SAS. MATLAB was used to generate the PCA and PLSR models 

described in this report.12 

It can be useful to think of chemometric models as techniques to compare the spectral 

fingerprints of different aggregates. Comparing and classifying spectral fingerprints can then be 

used to assess the chemical similarities and hence engineering properties of various groupings. 

The following sections present conceptual representations of PCA and PLSR models.  

2.4.1 Principal Components Analysis (PCA) 

A PCA model is a classification model. It is used to classify aggregate types (or spectra) 

by comparing and discriminating between spectra of the aggregates scanned. The model output is 

typically presented in graphical form where aggregate with similar spectra (chemical 

microstructure) will cluster in groupings or special fields. This is conceptually identical to a two-

dimensional graphical analysis where similar samples will cluster closer to samples that exhibit 

comparable properties and farther away from samples with dissimilar properties. 

An example of such a two-dimensional analysis is presented in Figure 2.6. In Figure 2.6, 

three aggregate samples—Granite (G), Limestone (L), and Shale (S)—are plotted on a simple two- 

dimensional graph. There are two variables considered: Hardness and Friability. Values for each 

variable (Hardness and Friability) have been measured and recorded on a scale ranging from 1 to 

10, where 1 in both cases is the lowest rating and 10, the highest. So, a Hardness Value of 10 would 

be the hardest material and a Friability Value of 10 would be the most friable material. The abscissa 

(x-axis) on the two-dimensional graph represents the Hardness and the ordinate (y-axis) the 

 
12 The report’s authors employed MATLAB to develop a software package to seamlessly process (in real-time) the laser-generated 
spectral intensity data for use in both PCA and PLSR models. This software is referred to as SAM, which is short for Sample 
Analysis Module 
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Friability. It is easy to observe in the hypothetical representation, that the Limestone (L) and 

Granite (G) samples plot closer together than the Shale (S). They do so because their respective 

Hardness and Friability scores are much more similar than those of the shale sample.13 The soft, 

friable Shale is in its own group. The Limestone and Granite samples represent harder and less 

friable aggregate. 

 

 
Figure 2.6: Two-Dimensional Hardness vs Friability Plot 

 

A PCA model transforms and projects the multidimensional nature of the spectral data onto 

a more familiar two-dimensional framework, which can readily be visualized. This transformed 

coordinate system is referred to as a Principal Components (PC) score plot.  

An example of a PC score plot is shown in Figure 2.7. Figure 2.7 shows projections of 

gravel and shale sample spectra that were generated during this study onto the score plot. The two 

axes on this new coordinate system are referred to as Principal Component 1 (PC1) and Principal 

Component 2 (PC2). The samples plot on this two-dimensional diagram can be interpreted like 

any two-dimensional (x vs y) diagram. Samples that are similar in composition are projected close 

to each other and those with different compositions are projected in different locations within the 

new coordinate system, sometimes referred to as PC space. The gravel samples cluster on the left 

side of the score plot and the shale on the right side. The major difference between the simple two- 

 
13 Each plotted point in the two-dimensional graph is represented by a two-dimensional vector, defined by two variables: hardness 
and, friability.  
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dimensional plot, shown in Figure 2.6, and a PC score plot is that a PC score plot represents 

samples with multidimensional spectral data.14 

Throughout this report reference is made to “aggregate fields.” Aggregate fields refer to 

PC score plots that depict aggregate clusters or groupings that identify specific aggregate types. In 

Figure 2.7 for example two aggregate fields can be clearly identified: gravels and shale. The 

gravels cluster to the left side of the score plot, primarily distributed along the PC1 axis and in the 

second and third quadrants. The shales cluster to the right, again along the PC1 axis in the first and 

fourth quadrants.15 

 

 
Figure 2.7: PC Score Plot of Gravel and Shale Samples 

2.4.2 Partial Least Square Regression (PLSR) 

A two-dimensional linear regression model is a line of best fit through a given two-variable 

data set. Each observation is associated with the two variables: a dependent variable (y) and an 

independent variable (x). An example is shown in Figure 2.8. Development of such a model 

requires two steps: a calibration step and a validation or test step. The calibration step establishes 

 
14 Each plotted point in a score plot is represented by a multidimensional vector, defined by multiple wavelengths (up to 14336) 
generated during a laser induced emission, which has been transformed to yield a two-dimensional representation of this vector.  
15 The referenced quadrants (1, 2, 3, and 4) are similar to the four quadrants associated with a standard cartesian coordinate plot 
with the origin at the center. 
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the relationship between the two variables.16 Once an effective regression line equation is 

established (or calibrated), the model can be used to predict the y-values of unknown samples.17 

 

 
Figure 2.8: Linear Regression Model 

 

A PLSR model is a multidimensional representation of a two-dimensional linear regression 

model. It analogously establishes, in the calibration step, a relationship between independent 

variables (X) and a dependent variable (y).18 Note in this case, a capital X is used to characterize 

the independent variable, instead of a lower-case x. This is because each X value is not a single 

variable but represents 14,336 variables. Each individual X is associated with one laser induced 

spectrum, which is also associated with one variable or one y value.19 This association is developed 

by calibrating the model to provide the best linear correlation between the X data and the y-value 

predictions.  

A PLSR model, similar to a PCA model, transforms the multidimensional nature of the 

analysis, to a two-dimensional framework and coordinate system that can be visualized. A 

graphical representation of a PLSR model output is shown in Figure 2.9. Figure 2.9 presents the 

results of an acid insoluble residue (AIR) PLSR model, developed with NY limestone spectral 

data. The data presented shows the model predictions for a series of unknown samples and 

compares how effectively the model matched the actual sample values. The model shown in Figure 

 
16 If the relationship is linear the model will generate the equation of a straight line (y= mx+b). 
17 Effective linear regression calibration implies high correlation and low residual error. Validation requires testing the calibrated 
model against a second independent set of samples (validation set) to establish how well the model predicts the y-values of the 
validation set. This also implies good correlation and low residual error. 
18 The dependent variable y is the dependent quantity that the model is predicting. 
19 The x variable is in reality an X matrix containing wavelength and intensity data for each laser shot. 
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2.9 was calibrated to predict AIR over a wide range of values.20 To calibrate such a model requires 

that samples that are part of the calibration set cover the range of AIR values, or more generally y 

values over which unknown samples will be tested. 

 

 
Figure 2.9: PLSR Acid Insoluble Residue Model 

 

There are instances in aggregate analysis where only two outcomes (or y-values) are 

known. Such a model is referred to as a binary model. A common example is Pass or Fail.21 This 

model output considers only one of two dependent variable outputs (y) associated with each 

independent variable (x). An example is shown in Figure 2.10. The two dependent variables are 

designated 0 and 1. Such a model is calibrated by assigning a value of 0 to all known failing 

samples and a value of 1 to all known passing samples. The model is tested by examining whether 

an independent set of samples will generate y values closer to 1 or closer to 0, for passing and 

failing samples, respectively. During the calibration, a boundary line between the passing and 

failing samples can be generated, referred to as the value of apparent distinction (VAD). During 

 
20 The calibrated AIR range (y value) in this case ranged from 20% to approximately 60%. 
21 An example of a binary model is the Kansas D-Cracking model, which is calibrated on the basis of a training set that contains 
samples that have passed the KDOT D-cracking test as well as samples that have failed the D-Cracking test. The calibrated model 
is then used to predict whether unknown samples will pass or fail the test. 
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model testing those samples exhibiting y values greater than the VAD are judged to be passing 

while those with values less than the VAD, failing. This type of model is used in several 

applications described in the report. 

 

 
Figure 2.10: Binary Regression Model 

2.4.3 Sample Collection Requirements 

The collection of samples used to calibrate aggregate models cannot be random.  Pre-

planning is necessary to ensure that the calibration samples used to develop the model are 

representative, to the extent possible, of the unknown samples that will be tested. Geologically 

speaking, this means that the calibration samples (or set) must span the range of conditions 

expected to be encountered in the unknown samples to be tested. Statistically speaking, this means 

that the calibration set must be a “representative” of future test samples. From a laser scanning 

perspective this means that the calibration samples must exhibit spectral patterns that cover the 

range of spectra that would be expected in future test samples.  

The hypothetical PC Score Plot, presented in Figure 2.11, is intended to conceptually 

illustrate how the sample selection process affects model planning and development. Figure 2.11 

depicts a PC Score Plot for scanned samples from a given Geologic Member A. Each scanned 

sample projects onto the score plot and tends to group with samples that exhibit similar 

geochemistry. There are three types of samples shown: 1) solid blue, 2) checkered orange, and 3) 

white samples. Each of the dots represents samples exhibiting specific geochemistry.22 Geologic 

 
22 The geochemistry variation could be represented by varieties of limestones, dolostones or other mineralogical species within the 
geologic member. 
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Member A is primarily characterized by the solid blue dots (geochemistry a), and Quarry A1 within 

Member A reflects similar geochemical characteristics. Quarry A2, however, appears to be 

characterized by an independent geochemistry (geochemistry c), while Quarry A3 appears to be a 

blend of geochemistry a and geochemistry b. 

 

 

Figure 2.11: Conceptual Representation of the Regional Aggregate Field 

 

Calibrating a model with a distribution of samples present in Member A should effectively 

model aggregate from Quarry A1 but would not be expected to effectively model aggregate from 

Quarry A2 or Quarry A3. In the latter cases local aggregate sample scanning would most likely 

result in an improved model.  

2.4.4 Laboratory Data Quality  

Both Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) 

models utilize the laser induced spectra to predict the model output. There is a notable distinction, 

however, between the two approaches. PCA classification models are independent of lab data. 

Scanned sample classification, presented in the form of a score plot, is exclusively dependent on 

the spectral data. No lab data is required. PLSR models, however, are dependent on lab data to 

define a specific quantifiable property, used as the dependent variable in the model calibration.  

It is known that many aggregate property tests used for quality monitoring lack precision 

and accuracy. This can be due to sample heterogeneity or inherent deficiencies in the test method. 

Poor precision and accuracy will impact the accuracy of PLSR model predictions associated with 
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such properties. When this is the case, additional care must be employed during the lab testing and 

calibration sample selection process to ensure, to the extent possible, that there is reasonable 

confidence that the laboratory data associated with the calibration sample dataset are accurate. 

Laboratory data that exhibit high variance and uncertainty will generate models that reflect this 

uncertainty.23  

2.4.5 Super Models and Source Models 

Reference is made in subsequent sections of this report to “Super Models” and “Source 

Models.” A Super Model is a model in which many, if not all cluster groups can be included in the 

calibration set. A Source Model is a model that is calibrated using samples collected from a local 

cluster. For example, in Figure 2.11, Quarries A2 and A3 would most likely require independent 

Source Models.  

 
23 Providing a robust sample database from which uncertain samples can be screened and removed from the calibration set can help 
to mitigate problems associated with the use of samples with questionable lab data.  
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Chapter 3: Kansas Laser Scanning Analysis 

3.1 Kansas Scanning Objectives 

D-cracking is a freeze-thaw related damage in concrete pavements. It has primarily been 

attributed to the presence of coarse-grained limestone aggregates that do not have sufficient 

internal resistance to withstand the induced internal pressures associated with the freeze-thaw 

Kansas environment. Both textural and mineralogical reasons have been reported as possible 

contributing factors. The exact mechanism involved however is unknown. To mitigate the 

problem, the Kansas Department of Transportation (KDOT) has developed rigorous testing 

procedures for limestone aggregate use in concrete. The KDOT practice involves two laboratory 

tests for qualifying concrete aggregates. The tests include a soundness test KTMR-21 (2012) and 

a freeze thaw test KTMR-22 (2012). Both tests are time consuming and together can take 

approximately six months to complete. KDOT manages the approval process by pre-qualifying 

aggregate sources. Even with prequalified quarries, natural geologic variability has led to 

continued pavement degradation associated with non-durable concrete aggregates. Laser scanning 

of KDOT aggregates using the SLT was undertaken to determine whether the LIBS process could 

provide the means for the rapid identification of D-Cracking susceptible aggregates in near real-

time. 

Aggregate suppliers commonly blend several materials to produce a finished stockpile 

before shipping or mixing the blended material in concrete applications. Once blended it is almost 

impossible to practically check whether the original materials used to make up the blend were 

derived from approved sources. 

The Kansas laser scanning effort included two objectives: Objective 1: Determine whether 

laser scanning could differentiate between D-Cracking susceptible aggregate sources and non-

susceptible sources, and Objective 2: Determine whether laser scanning could verify whether a 

blended stockpile of two or more aggregate sources were comprised of known original aggregate 

sources. 
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3.2 Kansas Aggregate Samples and Sources  

During the effort, KDOT supplied for scanning a total of 224 aggregate samples. The 

aggregates were collected from 23 different geologic members and 21 different quarries. Each 

geologic member was found to encompass anywhere from one to five quarry locations. A list of 

all samples collected their respective geologic members and source quarries are tabulated in Table 

3.1. All the samples were limestones, except for one granite/diabase sample and four gravel 

samples. Of the 224 samples collected, 159 samples had associated D-cracking test data, reported 

as Pass or Fail that could be used in the D-cracking analysis. Fifty-four (54) samples were reported 

as failing and 105 passing. 

3.3 KDOT D-Cracking Model 

3.3.1 PLSR Binary Model 

Defining whether an aggregate is D-cracking susceptible (or not) lends itself to a PLSR 

binary model, described in Section 2.4.2 Partial Least Square Regression (PLSR). This type of 

model generates one of two outputs: Pass or Fail; Yes or No; or for modeling purpose 1 or 0, where 

the number 1 represents pass, and 0 represents fail. 

3.3.2 PLSR Binary Model Calibration 

Preliminary calibration models were screened to assess whether all statewide samples 

could be included in one large Super D-cracking model or whether Source or more localized 

models were more effective predictors of D-cracking susceptibility. In both cases, D-cracking 

PLSR models were calibrated by selecting all relevant samples from total or local KDOT D-

cracking database, and randomly dividing the samples into two sets: a calibration set and a test 

set.24 Each sample in the calibration set was assigned a y-value of 0 or 1, based on the KDOT 

reported D-cracking lab result (Passing = 1 and Failing = 0). 

  

 
24In the case of a Super Model, the D-cracking samples included all available samples in the KDOT database. In the case of a 
Source Model, the D-cracking database was limited to specific geologic members from which the aggregate tested was derived.  



24 

Table 3.1: KDOT Samples and Sources 

Geologic Member Total 
Samples 

Quarry Name  
(Samples) [1] 

D Cracking 
Database 

Samples [2] 
Amoore LS Mb 1 Am-A (1) 1 
Bennett Reef Limestone Mb 17 Ben-A (17) 11 
Bethany Falls Limestone Mb. 10 Bet-A (3) 8 
  

 
Bet-B (7)  

Burlington LS Fm. 1 Bu-A (1) 1 
Captain Creek Limestone Mb. 7 Cc-A (1) 5 
  

 
Cc-B (3)  

  
 

Cc-C (3)  
Copper-Calloway Ls Mb. 2 Co-A (2) 1 
Creswell Limestone Mb 24 Cr-A (4) 8 
  

 
Cr-B (20)  

Dakota FM 2 Da-A (2) 2 
Ervine Creek Limestone Mb. 50 Ec-A (29) 

Ec-B  
40 

  
 

Ec-C (11)  
  

 
Ec-D (10)  

Granite/Diabase 1 
 

 
Gravel Deposit 4 

 
 

Hartford Limestone Mb. 4 Ha-A (4) 3 
Krider Limestone Mb 1 Kr-A (1) 0 
Lower Farley LS Mb 1 Lf-A (1) 1 
Raytown LS Mb. 8 Ra-A (8) 7 
Rock Bluff Limestone Mb. 2 Rb-A (2) 2 
South Bend Limestone Mb. 1 Sb-A (1) 1 
Spring Hill Limestone Mb. 14 Sp-A (4) 8 
  

 
Sp-B (7)  

  
 

Sp-C (3)  
Stoner Limestone Mb. 24 St-A (4) 22 
  

 
St-B (9)  

  
 

St-C (1)  
  

 
St-C (7)  

  
 

St-D (3)  
Tarkio Ls Mb 9 Ta-A (2) 7 
  

 
Ta-B (4)  

  
 

Ta-C (3)  
Towanda Limestone Mb. 11 To-A (11) 8 
Upper Farley LS Mb 11 Uf-A (11) 9 
Warsaw LS. FM 3 Wa-A (3) 3 
Winterset Limestone Mb. 5 Wi- A (5) 2 
Worland Limestone Mb. 11 Wo-A (6) 8 
  Wo-B (5)  
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3.4 Statewide D-Cracking (Super) Models 

Several attempts were made at calibrating a Super D-cracking model with little success. 

Calibration and validation testing results of one modeling attempt are shown in Figure 3.1. Figure 

3.1 is a plot of observed (or known) pass-fail values on the x-axis and predicted values on the y-

axis. Recall that the known values can either be 0 or 1. The left side of the figure depicts the 

calibration results. All the known calibration samples that failed the KDOT D-cracking test (x-

axis value = 0), clustered around the predicted y-value of 0; and all the known calibration samples 

that passed the test (x-axis value = 1), clustered around the y-value of 1. Although the calibration 

data showed some scatter, the model conformed to the calibration set. Validation testing results, 

shown on the right side of the figure, however, did not closely cluster around their known 

respective pass-fail values of 1 and 0. The model output displays a wide variance around the pass-

fail values and yielded a prediction of only 71% efficiency. The Super models were not highly 

predictive. The poor efficiency can be seen by examining the number of failing samples with y-

values greater than the VAD value of 0.5, and the number of passing samples with y-values less 

than 0.5.25 

 

 
25 A 71% predictive efficiency is calculated by comparing the number of correct D-cracking predictions to the total number of 
predictions made. A good predicting efficiency would be expected to be 85% or greater. 
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Figure 3.1: Super D-Cracking Model Calibration and Validation: Graphical Results 

3.5 Source D-Cracking (Local) Model 

KDOT Source Models were defined by geologic member. A listing of the 23 geologic 

members, and the number of samples available for D-cracking model development per member 

are listed in Table 3.1. While KDOT provided approximately 159 samples for analysis, only three 

geologic members contained a sufficient number of samples to attempt model development. These 

members included: Stoner Limestone, Creswell Limestone, and Ervine Creek.26 

3.5.1 Stoner Limestone Mb 

Twenty-two aggregate samples were available for the Stoner D-cracking modeling effort. 

Eleven of the 22 were randomly selected for the development of a calibration model and 11 

samples were used to validate the model. After development and testing of the first model, a second 

model was developed by reversing the calibration and validation sets to assess whether sample 

selection might be introducing a bias in the results of the model. 

 
26 The Bennett Reef Limestone member had 11 samples available, but only 1 of the 11 (KS113) reportedly failed the KDOT D-
cracking test, making model calibration and validation impractical. The number of Creswell Limestone samples available were 
barely adequate; but Creswell was included for analysis.  
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The first calibration model and validation test results for the Stoner Model are presented in 

Figure 3.2. The left side of the figure displays the calibration model and the right side, the 

validation test. The calibration model exhibited good correlation. The validation test resulted in 11 

correct predictions out of 11 samples or prediction 100% efficiency. A list of the samples used in 

the calibration model and the validation test are respectively included in the figure, along with the 

numerical y-value predictions. Reversing the calibration and validation sets confirmed the 

excellent results of the first model. All the D-cracking predictions were correct. The second 

calibration model and validation test results are presented in Figure 3.3. 

3.5.2 Cresswell Limestone Mb 

Of the 16 samples available for the development of a Cresswell Limestone D-Cracking 

model, only eight samples were suitable for use.27. This meant that only four samples were 

available for model calibration and four samples for validation testing.28 
 

 
Figure 3.2: Stoner Limestone Model 1 D-Cracking Results 

 
27 The remaining 8 samples were blends of different beds (production samples) and were judged unsuitable for use in the geologic 
member model. 
28 So few samples do not provide a sufficient number to develop both a calibration and test set. 
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Figure 3.3: Stoner Limestone Model 2 D-Cracking Results 

 

Nonetheless due to the limited number of suitable samples with adequate sample 

populations a model was generated. After development and testing of the first model, a second 

model was developed by reversing the calibration and validation sets. 

The first calibration model and validation test results for the Cresswell Model are presented 

in Figure 3.4. The second model results are presented in Figure 3.5. Of the four samples available 

for validation testing, the first model predicted the results with 100% efficiency. The second model 

predicted three of the four samples correctly. These data reveal that the potential exists that 

Creswell Limestone member could serve as a Source or Local D-cracking model. The insufficient 

number of samples precludes any additional assessment. 
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Figure 3.4: Cresswell Limestone Model 1 D-Cracking Results 

 

 
Figure 3.5: Cresswell Limestone Model 2 D-Cracking Results 
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3.5.3 Ervine Creek Limestone Mb 

The Ervine Creek Limestone member provided 40 samples for analysis. In total, this meant 

that 20 samples could be used for the development of the calibration model and 20 samples for the 

validation test. It is noteworthy that of the 40 samples collected by KDOT, 20 samples were 

collected in the year 2018 and 20 samples were collected in the year 2019. 

The initial Ervine Creek Modeling effort included all 40 samples. Similar to previously 

described D-cracking modeling efforts, two models were developed. The first model included the 

random selection of 20 of the 40 available samples for model calibration and the remaining 20 for 

model validation. The second model was developed and tested by reversing the calibration and 

validation sets. The results of the Model 1 and Model 2 efforts are shown in Figure 3.6 and Figure 

3.7, respectively. The prediction efficiency of the respective models was 70% and 75%, 

respectively.  

 

 
Figure 3.6: Ervine Creek Limestone Model 1 D-Cracking Results (All Samples) 
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Figure 3.7: Ervine Creek Limestone Model 2 D-Cracking Results (All Samples) 

 

The relatively weak predictive efficiency of the Ervine Creek models that included both 

the 2018 and 2019 samples suggested a closer look at the spectra associated with the samples 

collected during each respective year. This was accomplished using a PC Score plot, described in 

Section 2.4.1 Principal Components Analysis (PCA), to evaluate whether significant spectral 

differences could be detected between samples collected during the different time periods. The 

results of this analysis are presented in Figure 3.8. Recalling from Section 2.4.1 Principal 

Components Analysis (PCA) that in a PC score plot, samples with similar spectra tend to cluster 

in groupings, the data presented show that almost all of the 2019 samples cluster in the third 

quadrant of the score plot; and the 2018 sample set almost exclusively span the first and fourth 

quadrants, extending somewhat into the second. The score plot data suggest that the 2018 samples 

differ from the 2019 samples. Due to the wide spread of the 2018 grouping, and number of 

quadrants occupied by this grouping, these data suggest that the 2018 samples exhibit much greater 

chemical heterogeneity than the 2019 samples. 

 



32 

 
Figure 3.8: PC Score Plot – 2018 and 2019 Samples 

 

All of the 2018 samples were collected from quarries Ec-A and Ec-B. The 2019 samples 

were collected from quarries Ec-C and Ec-D. In addition, the Ec-C samples cluster separately from 

the Ec-D quarry samples. The differences between the 2018 and 2019 samples are most likely due 

to differences in rock chemistry amongst the quarries; and these differences were enough to 

adversely affect the quality of the total Ervine Creek models, presented in Figure 3.6 and Figure 

3.7. 

Since an Ervine Creek model that included all Ervine Creek samples was not very effective, 

two sub-member models were developed. The first sub-member model included samples from the 

2018 data set, which consisted of samples from the Ec-A and Ec-B quarries; and the second sub-

member included samples from the 2019 data set, which consisted of samples from the Ec-C and 

Ec-D quarry sites. 

The 2018 model results are presented in Figure 3.9 and Figure 3.10. As previously 

described, two models were developed for this analysis. The first model included the random 

selection of half of the available samples for model calibration and the remaining half for model 

validation. The second model was developed and tested by reversing the calibration and validation 
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sets. Figure 3.9 displays the results of Model 1 and Figure 3.10 the results of Model 2. Model 1 

yielded 70% predictive efficiency and Model 2 a 90% efficiency. 

The 2019 model results are presented in Figure 3.11 and Figure 3.12. Two models were 

also developed for the 2019 samples. Figure 3.11 displays the results of Model 1 and Figure 3.12, 

Model 2. Model 1 yielded a 100% predictive efficiency and Model 2 an 80% efficiency. Separate 

models for the Ec-C quarry site or the Ec-D site could not be developed because all 11 Ec-C 

samples passed D-cracking and of the seven Ec-D samples available for analysis, six failed the D-

cracking test. Only by combining the two quarries, which is represented in the 2019 models, 

presented in Figure 3.11 and Figure 3.12, were there sufficient data for model calibration.29 

A summary table for the Ervine Creek models is presented below. It is notable that the 

efficiency of the models improves as the calibration set moves from a wider geologic member 

analysis to a local quarry analysis.30 

 
Table 3.2: Ervine Creek Prediction Efficiency Summary 

Ervine Creek Geologic Source Modelled Prediction 
Efficiency (%) [1] 

Total Ervine Creek Member 70-75 

Ec-A and Ec-B Quarries Only (2018 Data) 70-90 

Ec-C and Ec-D Quarries (2019 Data) 80-100 

[1] Prediction efficiency range of the two models developed for each analysis. 

 

 
29 Model calibration requires a calibration set that contains distribution of passing and failing samples. 
30 The 2019 data was shown to model better than the 2018 data. In addition to the differences in rock chemistry between the samples 
collected and scanned during the two periods, a second factor could have influenced the results. Laser scanning operations improved 
each year. This was due to both hardware upgrades and operator experience. Such improvement could have yielded better spectral 
resolution in 2019 compared to 2018, thereby generating improved models. 
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Figure 3.9: Ervine Creek 2018 Model 1 D-Cracking Results 

 

 
Figure 3.10: Ervine Creek 2018 Model 2 D-Cracking Results 
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Figure 3.11: Ervine Creek 2019 Model 1 D-Cracking Results 

 

 
Figure 3.12: Ervine Creek 2019 Model 2 D-Cracking Results 
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3.6 Unknown KDOT Sample D-Cracking Analysis 

In this study phase, KDOT provided 50 unknown samples, identified as sample KSU1–

KSU50. The objective was to determine the D-crack susceptibility of each of the unknowns. Table 

3.3 lists the unknown samples, grouped by geologic members. The KSU1–KSU50 samples 

comprise eight different members. Only Ervine Creek had a sufficient number of calibration 

samples to develop a working model.  

The Ervine unknown sample modeling results are presented in Table 3.4. The table lists 

the y-value results of a PLS model developed for Ervine Creek (KS_D_Ervine Creek_Model1). 

All y-values above 0.5 suggest passing D-cracking results and those below 0.5, failing results. All 

of the KSU Ervine Creek samples were projected to pass. These blank samples (KSU12–KSU24) 

all were reported by KDOT as passing samples after the projections were made. 

 
Table 3.3: Unknown Sample Modeling Summary and Results 

Unknown Sample 
Members Samples D-Cracking Model Predictions 

Dakota KSU43-KSU44 
Only 2 samples were available for 
calibration, so could not develop a 

calibration model 

Ervine Creek KSU12_KSU24 

Model was developed with 20 calibration 
samples 12 passing and 8 failing 
Reference model = KS_D_Ervine 

Creek_Model1 

Lower Farley KSU11 Only 1 sample was available for calibration. 

Raytown KSU45_KSU52 
7 samples were available for calibration, but 
all samples passing so could not generate a 

calibration model. 

Rock Bluff KSU16- KSU20 
Only 2 samples were available for 
calibration, so could not develop a 

calibration model 

Tarkio KSU25-KSU31 

7 samples were available for calibration, but 
only 1 of the 7 failed the KDOT D-cracking 

test so could not generate a calibration 
model. 

Towanda KSU32-KSU42 

8 samples were available for calibration, but 
only 1 of the 8 failed the KDOT D-cracking 

test so could not generate a calibration 
model. 

Upper Farley Unknowns KSU1-KSU10 Insufficient calibration samples available 
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Table 3.4: Ervine Creek Unknown Sample Model Results (y-value predictions) 
Sample Predicted  
KSU12 1.46 
KSU13 1.30 
KSU14 1.03 
KSU15 1.47 
KSU17 1.65 
KSU18 1.38 
KSU19 1.52 
KSU21 1.52 
KSU22 1.53 
KSU23 1.65 
KSU24 1.28 

3.7 Blended Field-Production Sample Analysis 

Once production samples that contain a blend of two or more aggregate sources are 

produced in the field, it is almost impossible, using standard aggregate testing methods, to 

determine whether the individual sources comprising the blend were all derived from pre-approved 

materials. The following subsections contain a series of analyses of blended KDOT samples that 

illustrate how laser scanning analysis can address this issue. 

3.7.1 Tarkio Limestone, Ta-A. Quarry, Source Beds 1-5 Validation 

According to KDOT, two aggregate samples, labelled KS116 and KS117, were reported to 

have been collected from the same quarry site (Quarry Label Ta-A) and the same beds within the 

quarry. 

The KDOT question: Were the KS116 and 117 samples collected from the same beds? 

Classification of sample spectra can be undertaken by employing a PCA model to 

determine whether the samples spatially cluster into separate groups or one group. Clustering into 

separate groups would indicate that the samples are measurably different. Two sample sets 

clustering together would indicate that the samples are not measurably different. A PCA model 

was created using 19 individual scans of sample KS116 and 21 scans of sample KS117. The model 

results are presented in the PC score plot shown in Figure 3.13. The score plot depicts the spatial 

distribution of individual KS116 and KS117 sample scans. The spatial distribution of the KS116 
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and KS117 scans appear random and do not cluster into separate groupings. This suggests that 

their spectra and underlying chemistry are similar. It can therefore be assumed that KS116 and 

KS117 were derived from the same source. 

 

 
Figure 3.13: KS116-KS117 Source Bed Validation 

 

Samples KS203 and 204 were collected from a different part of the same Ta-A quarry and 

from designated Beds 1 and 2.  

The KDOT Question: Are the KS203 and 204 samples similar to the KS 116 and 117 

samples? 

When the scanned spectra from both the KS203 and 204 samples are included in the PCA 

model, with the KS116 and 117 samples, the results show that the 203 and 204 samples cluster in 

a separate grouping, indicating that the 203 and 204 spectra are measurably different than the 116 

and 117 spectra. This is shown in Figure 3.14. The KS203 and 204 also appear to form their own 

separate subgroupings, suggesting that there are differences between the 203 and 204 samples. 
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Figure 3.14: KS116-KS117 and KS203-KS204 Comparison 

3.7.2 Stoner Limestone Mb, St-B Quarry Production Sample Validation 

Four different production samples (KS85, 86, 87, and 88) were reported to be mixtures of 

four ledge samples from the quarry site, labelled St-B in the Stoner limestone member. Samples 

collected from these four ledge samples were respectively labelled KS11, 12, 13 and 14. 

The KDOT question: Are each of the production samples (KS85, 86, 87, and 88) mixtures 

of the four ledge samples (KS11, 12, 13, and 14)? 

PCA models were developed for each of the four production samples to determine whether 

the production samples would fall into a PC score field defined by the four ledge samples. The 

results of the analysis for each of the four production samples (KS85, 86, 87, and 88) are presented 

in Figure 3.15, Figure 3.16, Figure 3.17, and Figure 3.18, respectively. Each of the PC score plots 

displays the two-dimensional projections of the multidimensional spectral array associated with 

each ledge sample and the specific production sample being evaluated. In Figure 3.15, for example, 

this would include the four ledge samples (KS11, 12, 13, and 14) and the production sample 

(KS85). The ledge samples together span an area in PC space defined by the ellipse, drawn over 
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the score plot. The boundary of this ellipse defines what is termed the Ledge Field. In addition, the 

production sample, KS85, which was scanned three times defines its own smaller KS85 Production 

Field, highlighted in the figure. 

If the Production Sample KS85 is a mixture of KS11, 12, 13, and 14, then the KS85 

Production Sample field must fall within the boundary of the KS11, 12, 13, and 14 sample Ledge 

Field. The KS85 Production Sample field does fall within the Ledge Field boundary and so it is 

concluded that it is likely that KS85 is a mixture of the KS11, 12, 13, and 14 ledge samples. 

The results of the remaining analyses are summarized in Table 3.5. Each of the production 

samples are likely mixtures of the ledge samples.31 

 
Table 3.5: Stoner-St-B Production Sample Validation Results 

Production 
Samples 

Mixture of Ledge Samples  
(KS11, 12, 13, and 14) 

KS85 Yes 
KS86 Yes 
KS87 Yes 
KS88 Yes 

 

 
31 If the production sample field falls within the ledge field boundary, then one can conclude that it is “likely” that the production 
sample is a mixture of the ledge samples. This is because the production samples could be a mixture of other samples that also 
generate a ledge field that encompasses the Production Sample Field. If, however, the Production sample does not fall within a 
ledge sample field, then it can be concluded that the Production Sample is “not” a mixture of the ledge samples. 
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Figure 3.15: KS85 Production Sample Validation 

 

 
Figure 3.16: KS86 Production Sample Validation 
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Figure 3.17: KS87 Production Sample Validation 

 

 
Figure 3.18: KS88 Production Sample Validation 
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3.7.3 Bethany Falls Mb, Bet-B Quarry Production Sample Validation 

Four different production samples (KS91, 92, 93, and 94) were reported to be mixtures of 

three different ledge samples from the Bethany Falls, Bet-B Quarry. Samples collected from the 

three ledge samples were respectively labelled KS95, 96, and 97. 

The KDOT question: Are each of the production samples (KS91, 92, 93, and 94) mixtures 

of the three ledge samples (KS95, 96, and 97)?  

The Bethany Falls, Bet-B Quarry analysis was undertaken in the same manner as the Stoner 

Limestone Mb, St-B Quarry, previously described. PCA models were developed for each of the 

four production samples to determine whether the production samples would fall into a PC score 

field defined by the three ledge samples. The results of the analysis for each of the four production 

samples (KS91, 92, 93, and 94) are presented in Figure 3.19, Figure 3.20, Figure 3.21, and Figure 

3.22, respectively. The results are summarized in Table 3.6. 

 
Table 3.6: Bethany LS- Bet-B Sample Validation Results 

Production 
Samples 

Mixture of Ledge Samples  
(KS11,12,13 and 14) 

KS91 Yes 
KS92 Yes 
KS93 Yes 
KS94 No 

 

All of the production samples, with the exception of KS94 fell within the ledge field 

boundary. It is concluded that KS94 is not a mixture of the ledge field samples. 
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Figure 3.19: KS91 Production Sample Validation 

 

 
Figure 3.20: KS92 Production Sample Validation 
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Figure 3.21: KS93 Production Sample Validation 

 

 
Figure 3.22: KS94 Production Sample Validation 
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3.7.4 Towanda Mb, To-A. Production Sample Validation 

Eight different production samples (KS98, 99, 100, 101, 102, 103, 104, and 105) were 

reported to be mixtures of two different ledge samples from the Tonawanda Member, To-A 

Quarry. Samples collected from the two ledge samples were respectively labelled KS106 and 107.  

The KDOT question: Are each of the production samples (KS98-KS105) mixtures of the 

two ledge samples (KS106 and KS107)?  

The Towanda Mb, To-A Quarry analysis was undertaken in the same manner as the prior 

analyses. PCA models were developed for each of the eight production samples to determine 

whether the production samples would fall into a PC score field defined by the two ledge samples. 

The results of the analysis for each of the eight production samples (KS98-KS105) are presented 

in Figure 3.23, Figure 3.24, Figure 3.25, Figure 3.26, Figure 3.27, Figure 3.28, Figure 3.29, and 

Figure 3.30, respectively. The results are summarized in Table 3.7. 

 
Table 3.7: Towanda Mb, To-A Sample Validation Results 

Production 
Samples 

Mixture of Ledge Samples  
(KS106, 107) 

KS98 No 
KS99 Yes 
KS100 No 
KS101 No 
KS102 No 
KS103 No 
KS104 No 
KS105 No 

 

With the exception of KS99, none of the production samples fell within the ledge field 

boundary. It is concluded that KS99 is the only sample that is a likely mixture of the ledge field 

samples.  
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Figure 3.23: KS98 Production Sample Validation 

 

 
Figure 3.24: KS99 Production Sample Validation 
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Figure 3.25: KS100 Production Sample Validation 

 

 
Figure 3.26: KS101 Production Sample Validation 
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Figure 3.27: KS102 Production Sample Validation 

 

 
Figure 3.28: KS103 Production Sample Validation 
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Figure 3.29: KS104 Production Sample Validation 

 

 
Figure 3.30: KS105 Production Sample Validation 
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3.8 KDOT Findings and Conclusions 

3.8.1 Findings 

• Laser scanning PLSR Source models with aggregate samples from common 

geologic members properly identified D-cracking susceptible aggregate 

between 80 and 100% of the time. 

• Laser scanning PLSR Super Models were less predictive, identifying D-

cracking susceptible aggregate approximately 70% of the time. 

• Laser scanning PCA models were effective in validating the aggregate 

identities of production sample mixtures. 

3.8.2 Conclusions 

• Laser scanning may be used as a quality control tool to identify D-cracking 

susceptible aggregate – between 70% and 100% of the time, depending on 

whether PLSR Source Models or Super Models are used. 

• To achieve this, it is most likely that the calibration of KDOT Source 

Models will be required. 

• Laser scanning can be used as an effective quality control tool to screen 

production sample mixtures to ensure that only approved materials are 

introduced into production blends. 
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Chapter 4: New York Laser Scanning Analysis 

4.1 New York State Scanning Objectives 

NYSDOT uses its own acid insoluble residue (AIR) test MM28 (2007), to assess the 

friction properties of aggregates used in State paving applications. This test method typically takes 

several days to complete and makes use of corrosive concentrated acid solutions that emit noxious 

fumes that must be controlled. An alternative method in which many aggregate samples could be 

rapidly screened within minutes for AIR, thereby reducing or eliminating the need for MM28 

testing would be a welcomed option. The New York State effort focused on evaluating how well 

laser induced spectra could be used as a surrogate for predicting AIR. The modeling effort involved 

calibrating and testing Partial Least Square Regression (PLSR) models to predict sample aggregate 

AIR values. 

4.2 New York State DOT Aggregate Samples and Sources 

NYSDOT provided approximately 124 samples for scanning. Of the 124 samples, 101 

contained AIR data and sufficient lithological data to characterize the sample. The Research Team 

supplemented these samples with an additional 23 samples collected from the R83 quarry, 

resulting in a total of 124 samples with sufficient lithological data for analysis. Table 4.1 lists the 

13 lithological categories that were associated with these samples. 

 
Table 4.1: Lithological Categories for NY Samples (Legend) 

L = Limestone 
D =Dolomite 
D/L = Dolomite & Limestone 
DS = Dolostone 
G = Granite 
SS = Sandstone 
L-x% = Mix with x% Limestone 
M = Marble 
T = Traprock 
SS/SH/Q = Mix Sandstone, Shale, and Quartzite 
CM = Crushed Marble 
MMET = Mixed Metamorphic 
SS/SH = Mixed Sandstone and Shale 
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All samples provided by NYSDOT were collected as part of the Department’s annual 

quality assurance program, and included limestones, dolomites, marble, granite, shale, traprock, 

sandstones, and various mixtures from 50 different quarry sources across the eight NYSDOT 

Transportation Regions.32 Table 4.2 through Table 4.9 provide, by region, the source quarry for 

each sample collected.33 

 
Table 4.2: NYSDOT Region 1 Samples 

Quarry Sample ID Lithology 

R11 NY110 
NY333 L 

R12 NY111 L 
R13 NY506 D 
R14 SM18 SS/SH/Q 
R15 SM10 SS/SH 
R16 NY124 L 
R17 NY300 DS 
R18 SM3, 4, 5 L 
R19 NY342 DS 
R110 NY123 D 

 
Table 4.3: NYSDOT Region 2 Samples 

Quarry Sample ID Lithology 
R21 SM14 SS/SH/Q 
R22 SM15 SS/SH/Q 
R23 NY125 D/L 
R24 NY126 D/L 
R25 NY325 L 
R26 NY324 L 

 
Table 4.4: NYSDOT Region 3 Samples 

Quarry Sample ID Lithology 
R31 NY501 L 
R32 NY127 D 
R33 NY128 D 
R34 NY348 D 
R35 NY327 L 

  

 
32 These samples were collected over the course of the two TPF studies spanning a period from 2015 through 2019. 
33 Source quarries are unnamed and identified only by a Regional Code. 
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Table 4.5: NYSDOT Region 4 Samples 
Quarry Sample ID Lithology 

R41 NY313 
NY320 L 

R42 NY131 L 

R43 NY133 
NY134 L 

R44 SM20 D 
R45 SM19 L 

R46 NY112 
NY312 L 

R47 NY129 
NY350 D 

R48 NY130 
NY349 D 

R49 SM21 D 

 
Table 4.6: NYSDOT Region 5 Samples 

Quarry Sample ID Lithology 
R51 NY322 L-80% 
R52 SM11 MMET 
R53 NY315 L 
R54 NY303 DS 
R55 SM13 SS/SH/Q 

R56 NY135 
NY323 L 

R57 

NY136 
NY431   
SM1      
SM2 

L 

 
Table 4.7: NYSDOT Region 6 Samples 

Quarry Sample ID Lithology 
R61 SM8 M 

 
Table 4.8: NYSDOT Region 7 Samples 

Quarry Sample ID Lithology 
R71 SM7 M 
R72 NY120 D 
R73 NY502 L 
R74 NY503 L 
R75 NY121 D 
R76 NY122 D 
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Table 4.9: NYSDOT Region 8 Samples 
Quarry Sample ID Lithology 

R81 SM17 D 
R82 NY118 L 

R83 

NY100-107 
NY117 
NY119 

NY137-145 
NY147 

L 

R84 NY108 L 

R85 
NY109 
NY337 
NY444 

L 

R86 NY304 G 
R87 NY355 M 
R88 NY306 DS 
R89 NY451 T 
R810 SM16 CM 
R811 NY486 M 
R812 SM9 MMET 
R813 NY504 D 

4.2 Acid Insoluble Residue Modeling 

Acid Insoluble Residue (AIR) is the portion of an aggregate sample not dissolved in 

hydrochloric acid. It is related to the carbonate and non-carbonate elemental microstructure of the 

aggregate; and as a result, the spectral patterns associated with given samples. It was expected that 

AIR would be an ideal property for model calibration. 

While NYSDOT provided approximately 124 samples for scanning, the NYSDOT sample 

collection plans did not include provisions for the targeted collection of calibration samples that 

could be associated with test samples. The absence of a targeted NYSDOT sampling strategy 

limited the potential for highly accurate AIR model development. This is because regression 

models in general and multivariate PLSR aggregate models in particular, do not extrapolate and 

project values outside the range of the calibration space.34 Despite this limitation the model results 

presented illustrate that with focused sample calibration planning AIR can be predicted by laser 

scanning. To make this case, the Research Team undertook a modeling strategy that involved a 
 

34 To supplement the sample population provided by NYSDOT, the Research Team independently collected samples from the R83 
Quarry site, listed in Table 4.9. These samples provided the means to effectively calibrate a local limestone model. 
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stepwise approach which examined the progressive development of calibration models from a 

random calibration sample population to a more focused sample population in the following order: 

• All Statewide Aggregates 

• Carbonate Aggregates 

• Limestone Aggregates 

• Quarry (East Kingston) Aggregates 

The underlying objective was to illustrate how more targeted and strategic sampling 

improves model efficacy. Partial Least Square Regression Models (PLSR) were respectively 

calibrated for each of the pre-selected sample populations. Calibration was undertaken in each of 

the four populations by randomly choosing approximately one-half the total samples from each 

population set chosen. The remaining half of the sample population was used as the validation or 

test set. All models were developed in pairs. The first model, referred to as Model 1, included the 

random selection of calibration samples from the sample population and the second model, 

referred to as Model 2, utilized samples in which the Model 1 calibration test and validation set 

samples were reversed. Employing such an approach provided a means to ensure that the model 

results were not overly biased by sample selection. 

4.2.1 Modeling AIR with All Statewide Aggregates 

The initial modeling effort utilized all 124 available samples to determine whether an AIR 

Super Model could be developed for all New York State samples, regardless of the source or 

lithology.35 

Model 1 and Model 2 calibration models (see left side of figure) and the validation test 

results (see right side of figure) are graphically presented in Figure 4.1 and Figure 4.2, respectively. 

Each figure presents the relationship between the known (or observed) AIR value (abscissa) for 

each sample and the corresponding model-predicted value (ordinate). The figures also display a 

dashed line, which represents an ideal model, where the Observed and Predicted AIR values are 

equivalent; and a trend (least squares regression) line for the given results. 

 
35 A Super Model is a model where all samples, regardless of the type or source could effectively be introduced into the model. An 
effective Super Model would not require a targeted sampling strategy; but given the nature of AIR, this was not the case. 
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PLSR models are generally very effective in developing strong calibration models with 

calibration set samples. Both Model 1 and Model 2 calibrations show trend lines that highly 

correlate with the sample data. Predicted test set AIR sample results, as a group, also correlate well 

with actual AIR data; however, the residual errors associated with a large number of individual 

test samples were noticeably high. The residual error is defined as the difference between the 

predicted value and the dashed line in each of the figures.36 

A tabulated list of the test results for Models 1 and 2 are respectively presented in Table 

4.10 and Table 4.11. Samples exhibiting AIR residual errors less than 10% from the reported AIR 

values are highlighted in each table. While the Calibrated Super Models show relatively good 

correlation, the accuracy of the AIR test sample predictions, reflected by high residual errors, are 

poor for many samples. This can be seen by the large number of unshaded samples in Table 4.10 

and Table 4.11. 

The wide variety of aggregate types from different geologic, geographic, and lithological 

sources resulted in a poorly resolved spectral database, which translates into erratic model 

predictions for selected samples. Poor spectral resolution for selected samples occurs when an 

insufficient spectral database is available for those samples. The introduction of one or two random 

samples of aggregate with highly variable geochemical properties (see Table 4.1) adversely affects 

the model capacity to associate a spectral pattern with a particular AIR value. A much larger 

calibration set or more targeted model calibration for specific lithological categories would be 

required to resolve such a model. The distribution of samples provided by NYSDOT was not 

sufficiently robust to resolve the differences among these diverse populations. 

 
36 A perfect model would yield test set results that would fall along the dashed line shown. 
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Figure 4.1: NYAIR Statewide Aggregate Model 1 (NYAIR_All125_Full_M1) 

 

 
Figure 4.2: NYAIR Statewide Aggregate Model 2 (NYAIR_All125_Full_M2)  
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Table 4.10: Statewide Aggregate Model Results (NYAIR_All125_Full_M1) 
Samples37 Predicted Observed  Residual 
NYSM07_M3.mat 21.6 0.8 -20.8 
NY503_m3_737R_L_022020.mat 11.8 2.3 -9.5 
NY501_m3_313R_L_022020.mat -5.6 3.7 9.3 
NY505_m3_948R_L_022020.mat 27.8 4.0 -23.8 
NYSM21_M3.mat 9.0 5.6 -3.4 
NYSM17_M3.mat 30.5 12.3 -18.2 
NY135_m_5-7R.mat 26.8 14.1 -12.7 
NY350_m2_44R_Dx_022020.mat 19.6 14.9 -4.7 
NY322_m2_51R_Lx_022020.mat 52.0 18.1 -33.9 
NY122_m_7_8RS1.mat 10.1 18.2 8.1 
NY324_m3_29RS_L_022020.mat 56.3 19.6 -36.7 
NY100_m_8_15RS_Becraft.mat 27.6 22.4 -5.2 
NYSM19_M3.mat 29.2 23.5 -5.7 
NY128_m_3_8RS.mat 38.6 23.8 -14.8 
NY126_m_2_6RS1.mat 24.5 24.7 0.2 
NY337_m3_817RS_L_022020.mat 42.5 27.3 -15.2 
NY348_mn_3_8_RS_Dplus.mat 44.8 27.7 -17.1 
NY205_m.mat 33.5 29.2 -4.3 
NY315_m2_53R_17AR30_Lx_022020.mat 48.3 30.4 -17.9 
NY203_m.mat 46.2 30.7 -15.5 
NY300_m_1-26R_D.mat 22.6 31.3 8.7 
NY304_mn_8_44R_Gr.mat 27.8 31.4 3.6 
NY306_mn_8_5R_D.mat 8.1 33.1 25.0 
NY312_m4_43RS_L_022020.mat 54.0 35.2 -18.8 
NYSM01_M3.mat 30.1 36.5 6.4 
NY130_mn_4-4RS.mat 37.4 37.3 -0.1 
NY327_m4_39R1_LD_022020.mat 27.8 38.7 10.9 
NY431_m3_57RS_L_022020.mat 54.5 40.0 -14.5 
NY137_m_8-15RS.mat 23.6 41.4 17.9 
NY102_m2_815RS_L_NS__022020.mat 42.2 42.6 0.4 
NY120_m3_71RS_Dx_022020.mat 24.4 42.6 18.2 
NY112_m_4_3RS.mat 40.3 43.4 3.1 
NY118_m_8_15R.mat 37.7 43.6 5.9 
NY139_m_8_15RS.mat 36.1 43.6 7.5 
NY104_m3_815RS_L_022020.mat 32.9 45.8 12.9 
NYSM03_M3.mat 42.5 46.5 4.0 
NY110_m4_130R_L_022020.mat 35.3 47.1 11.8 
NYSM05_M3.mat 53.3 50.4 -2.9 
NY145_mn_8-15RS.mat 52.2 53.8 1.6 
NY143_mn_8_15RS.mat 60.4 54.3 -6.1 
NY108_m_8_17R.mat 42.0 54.7 12.7 
NY147_mn_8_15RS.mat 48.9 54.7 5.8 
NY106_m3_815RS_L_022020.mat 46.6 55.2 8.6 
NY124_mn__1_23R.mat 41.7 57.0 15.3 
NY141_mn_8-15RS.mat 63.4 57.2 -6.2 
NY133_m_4_12RS.mat 41.9 60.0 18.1 
NYSM15_M3.mat 64.1 65.9 1.8 
NYSM11_M3.mat 77.7 68.2 -9.5 
NYSM09_M3.mat 70.4 75.7 5.3 
NYSM13_M3.mat 76.0 77.1 1.1 
NY451_m3_86R_TR_022020.mat 77.5 82.7 5.2 

 
37 The extended sample names presented in the model output tables in this section are special names used by the Research Team 
to identify the sample source and location and whether sample scans were merged. The prefix of each name, prior to the first 
underscore in the name, identifies the actual sample. For example, NY118_m_8_15R.mat is sample NY118. 



60 

Table 4.11: Statewide Aggregate Model Results (NYAIR_All125_Full_M2) 
Samples Predicted Observed  Residual 
NY506_m3_1020RS_D_022020.mat -17.9 0.7 18.6 
NYSM16_M3.mat 35.8 1.0 -34.8 
NY502_m3_734R_L_022020.mat 0.3 4.0 3.7 
NY486_m3_876RS_M_022020.mat 7.8 5.6 -2.2 
NY123_m_1_8R.mat 19.8 6.5 -13.4 
NY504_m3_896R_D_022020.mat -6.2 7.3 13.5 
NYSM20_M3.mat 6.4 8.6 2.2 
NY342_m4_152R_17AR62_DOL_022020.mat 35.9 14.3 -21.6 
NY111_m_1_30RS.mat 19.5 16.3 -3.2 
NY320_m3_410R_L_022020.mat 42.5 17.3 -25.2 
NY131_m_4_11R.mat 24.6 19.4 -5.2 
NY121_m_7_8R.mat 24.0 20.6 -3.4 
NY129_mn_4-4R.mat 33.1 21.1 -12.0 
NY355_m4_846R_M_022020.mat 47.5 23.7 -23.8 
NY117_m_8_15RS.mat 23.8 24.1 0.3 
NY109_m_8_17RS.mat 23.3 24.8 1.5 
NY323_m3_57R_L_022020.mat 29.0 26.9 -2.1 
NY303_m2_54R_DOL_022020.mat 27.3 27.1 -0.2 
NY125_m_2_6R1.mat 21.9 33.0 11.1 
NY101_m2_815RS_L_ALST__022020.mat 39.1 33.5 -5.6 
NYSM04_M3.mat 31.9 33.8 1.9 
NY313_m3_410RS_L_022020.mat 34.4 35.1 0.7 
NY134_m_4_12RS.mat 54.4 35.9 -18.5 
NY305_mn_9_6R_L.mat -6.6 36.5 43.1 
NY204_m.mat 45.9 36.8 -9.1 
NYSM02_M3.mat 31.0 37.5 6.5 
NY202_m.mat 41.0 37.9 -3.1 
NY308_m2_910R_SS_022020.mat 58.8 40.0 -18.8 
NY127_m_3_8R.mat 32.3 40.2 7.9 
NY103_m2_815RS_L_PE__022020.mat 47.0 41.1 -5.9 
NY444_m3_817R_L_022020.mat 51.9 41.3 -10.6 
NY136_m_5-7RS.mat 51.4 42.0 -9.4 
NY325_m2_29R_L_022020.mat -13.0 43.5 56.5 
NY206_m.mat 28.8 43.7 14.9 
NY349_m3_44RS_D_022020.mat 19.0 44.3 25.3 
NY107_m_8_15RS.mat 51.1 44.4 -6.7 
NY142_mn_8_15RS.mat 53.1 46.7 -6.5 
NY119_m3_815RS_L_022020.mat 53.9 48.1 -5.8 
NY333_m4_35_022020.mat 58.3 50.6 -7.7 
NY138_m_8-15RS.mat 39.6 51.1 11.5 
NY140_m_8-15RS.mat 53.3 51.3 -2.0 
NY105_m_8_15RS.mat 48.7 51.6 2.9 
NYSM06_M3.mat 50.9 51.6 0.7 
NY144_mn_8_15RS.mat 58.7 54.6 -4.1 
NY146_mn.mat 52.2 56.7 4.5 
NYSM08_M3.mat 65.9 67.3 1.4 
NYSM12_M3.mat 82.3 69.8 -12.6 
NYSM14_M3.mat 63.6 70.5 6.9 
NYSM18_M3.mat 99.5 75.5 -24.0 
NYSM10_M3.mat 92.1 76.7 -15.4 
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4.2.2 Modeling AIR with Statewide Carbonate Rock 

A Statewide carbonate model, which included 79 total carbonate aggregate samples, was 

developed. This model included all limestones, dolomites, dolostones, dolomite-limestone 

mixtures, and marble. Model 1 and Model 2 calibration models and the validation test results are 

graphically presented in Figure 4.3 and Figure 4.4, respectively. The calibration model shows trend 

lines that exhibit high correlation with the calibration set sample data, and the test set data show 

relatively good correlation, but similar to the statewide all-sample results, individual AIR 

predictions exhibit higher than desirable residual errors. A tabulated list of the test results for 

Models 1 and 2 are respectively presented in Table 4.13 and Table 4.14. Samples exhibiting 

residual errors less than 10% from the reported AIR values are highlighted in each table.  

The Calibrated Statewide Carbonate Model, similar to the State All-Aggregate Model, is 

not predictive for many samples. The wide variety of carbonate aggregate types (limestone, 

dolomite, dolostones, various mixtures, and marble) collected from different geologic and 

geographic sources resulted in a poorly resolved spectral database. The results of the Statewide 

Carbonate model, as gauged by the Root Mean Square Error (RMSE) of the test data, appear 

however, to be more effective than the All-Aggregate State Model. RMSE is a standard way to 

measure the overall error of a model in predicting quantitative data. The higher the RMSE the 

poorer the model. RMSE results for both models are tabulated in Table 4.12. 

 
Table 4.12: RMSE Values for All-Aggregate and Carbonate Aggregate Models 

Model RMSE 
Statewide All-Aggregate Model1 13.45 
Statewide All-Aggregate Model2 15.74 

Statewide Carbonate-Aggregate Model1 12.19 
Statewide Carbonate-Aggregate Model2 12.17 

 

A comparison of the RMSE data suggests that limiting statewide samples to just carbonate 

samples improved the effectiveness of the model, but the wide variety of carbonate geochemistry 

in the calibration set still limited the overall effectiveness of the model. 
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Figure 4.3: NYAIR Carbonate Model 1 (NYAIR_Carbonate_Full_Model1) 

 

 
Figure 4.4: NYAIR Carbonate Model 2 (NYAIR_Carbonate_Full_Model2) 
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Table 4.13: NY Carbonate AIR Model 1 Results (NYAIR_Carbonate_Full_Model1) 
Sample Predicted Observed Residual 
NYSM07_M3.mat 11.1 0.8 -10.3 
NY502_m3_734R_L_022020.mat 3.8 4.0 0.2 
NY123_m_1_8R.mat 20.1 6.5 -13.6 
NY504_m3_896R_D_022020.mat 22.1 7.3 -14.8 
NYSM20_M3.mat 6.0 8.6 2.6 
NYSM17_M3.mat 14.4 12.3 -2.1 
NY342_m4_152R_17AR62_DOL_022020.mat 21.1 14.3 -6.8 
NY111_m_1_30RS.mat 16.1 16.3 0.2 
NY320_m3_410R_L_022020.mat 41.7 17.3 -24.4 
NY131_m_4_11R.mat 21.4 19.4 -2.0 
NY121_m_7_8R.mat 24.1 20.6 -3.5 
NY129_mn_4-4R.mat 30.2 21.1 -9.1 
NY100_m_8_15RS_Becraft.mat 14.7 22.4 7.7 
NY355_m4_846R_M_022020.mat 32.9 23.7 -9.2 
NY117_m_8_15RS.mat 29.4 24.1 -5.3 
NY323_m3_57R_L_022020.mat 34.4 26.9 -7.5 
NY125_m_2_6R1.mat 39.0 33.0 -6.0 
NY306_mn_8_5R_D.mat 38.5 33.1 -5.4 
NY313_m3_410RS_L_022020.mat 33.6 35.1 1.5 
NY134_m_4_12RS.mat 53.1 35.9 -17.2 
NYSM01_M3.mat 38.2 36.5 -1.7 
NY127_m_3_8R.mat 16.3 40.2 23.9 
NY444_m3_817R_L_022020.mat 44.5 41.3 -3.2 
NY136_m_5-7RS.mat 45.8 42.0 -3.8 
NY102_m2_815RS_L_NS__022020.mat 46.4 42.6 -3.8 
NY325_m2_29R_L_022020.mat -5.8 43.5 49.3 
NY349_m3_44RS_D_022020.mat 21.2 44.3 23.1 
NY104_m3_815RS_L_022020.mat 37.6 45.8 8.2 
NYSM03_M3.mat 44.8 46.5 1.7 
NY142_mn_8_15RS.mat 46.7 46.7 0.0 
NY119_m3_815RS_L_022020.mat 44.7 48.1 3.4 
NYSM05_M3.mat 41.6 50.4 8.8 
NY333_m4_35_022020.mat 49.9 50.6 0.7 
NY138_m_8-15RS.mat 48.3 51.1 2.8 
NY140_m_8-15RS.mat 50.1 51.3 1.2 
NY144_mn_8_15RS.mat 56.4 54.6 -1.8 
NY108_m_8_17R.mat 47.3 54.7 7.4 
NY147_mn_8_15RS.mat 64.8 54.7 -10.1 
NY106_m3_815RS_L_022020.mat 49.4 55.2 5.8 
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Table 4.14: NY Carbonate AIR Model 2 Results (NYAIR_Carbonate_Full_Model2) 
Sample Predicted Observed Residual 
NY506_m3_1020RS_D_022020.mat -2.0 0.7 2.7 
NYSM16_M3.mat 29.4 1.0 -28.4 
NY503_m3_737R_L_022020.mat 12.6 2.3 -10.3 
NY501_m3_313R_L_022020.mat 27.6 3.7 -23.9 
NY505_m3_948R_L_022020.mat 18.3 4.0 -14.3 
NYSM21_M3.mat 5.1 5.6 0.5 
NY135_m_5-7R.mat 30.8 14.1 -16.7 
NY350_m2_44R_Dx_022020.mat 20.3 14.9 -5.4 
NY322_m2_51R_Lx_022020.mat 19.0 18.1 -0.9 
NY122_m_7_8RS1.mat 27.6 18.2 -9.4 
NY324_m3_29RS_L_022020.mat 38.5 19.6 -19.0 
NYSM19_M3.mat 13.5 23.5 9.9 
NY128_m_3_8RS.mat 39.8 23.8 -16.1 
NY126_m_2_6RS1.mat 26.2 24.7 -1.5 
NY109_m_8_17RS.mat 17.0 24.8 7.8 
NY337_m3_817RS_L_022020.mat 40.8 27.3 -13.5 
NY348_mn_3_8_RS_Dplus.mat 38.8 27.7 -11.1 
NY315_m2_53R_17AR30_Lx_022020.mat 32.1 30.4 -1.7 
NY101_m2_815RS_L_ALST__022020.mat 23.8 33.5 9.7 
NYSM04_M3.mat 44.1 33.8 -10.3 
NY312_m4_43RS_L_022020.mat 34.6 35.2 0.6 
NY305_mn_9_6R_L.mat 29.2 36.5 7.3 
NY130_mn_4-4RS.mat 34.9 37.3 2.4 
NYSM02_M3.mat 33.9 37.5 3.6 
NY327_m4_39R1_LD_022020.mat 16.3 38.7 22.4 
NY431_m3_57RS_L_022020.mat 37.1 40.0 2.9 
NY103_m2_815RS_L_PE__022020.mat 40.2 41.1 0.9 
NY137_m_8-15RS.mat 40.8 41.4 0.6 
NY120_m3_71RS_Dx_022020.mat 36.9 42.6 5.7 
NY112_m_4_3RS.mat 15.5 43.4 28.0 
NY118_m_8_15R.mat 62.1 43.6 -18.5 
NY139_m_8_15RS.mat 33.8 43.6 9.8 
NY107_m_8_15RS.mat 31.7 44.4 12.7 
NY105_m_8_15RS.mat 35.1 51.6 16.5 
NYSM06_M3.mat 53.8 51.6 -2.2 
NY145_mn_8-15RS.mat 52.7 53.8 1.1 
NY143_mn_8_15RS.mat 51.2 54.3 3.1 
NY124_mn__1_23R.mat 67.6 57.0 -10.6 
NY141_mn_8-15RS.mat 52.0 57.2 5.2 
NY133_m_4_12RS.mat 48.8 60.0 11.2 
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4.2.3 Modeling AIR with Statewide Limestones 

Of the 79 suitable carbonate samples available, 53 were classified as limestones. The 53 

limestone samples however were collected from 18 different quarries including the R83 quarry 

samples, which comprised 24 of the 53 total samples. The remaining 29 limestone samples came 

from 17 different quarry sites. Calibration samples (26 samples) were randomly selected from the 

53 limestones samples collected statewide. The remaining 27 samples were used as the validation 

or test set samples. Similar to all previously described New York modeling efforts, two models 

were developed. The first (Model 1) as described above and the second (Model 2) in which the 

calibration and validation set samples were reversed from the those of the first model. 

Model 1 and Model 2 calibration models and the validation test results are graphically 

presented in Figure 4.5 and Figure 4.6, respectively. The calibration models show trend lines that 

exhibit high correlation. A tabulated list of the test results for Models 1 and 2 are respectively 

presented in Table 4.16 and Table 4.17. Samples exhibiting residual errors less than 10% from the 

reported AIR values are highlighted in each table. The relative number of unshaded samples in the 

limestone model table are much less than the unshaded samples in the statewide and carbonate 

model tables previously presented. 

RMSE results for the All-Aggregate, Statewide-Carbonate, and Statewide Limestone 

models are tabulated in Table 4.15. The lower RMSE values, shown in Table 4.15, for the 

Limestone Models reflect the improvement in model prediction efficiency. Nonetheless, due to the 

wide-ranging geochemical properties of the limestone samples provided by NYSDOT, a highly 

effective statewide Super Limestone Model could not be generated. More focused Source models, 

or an expanded calibration sample set are required. 

 
Table 4.15: RMSE Values for All-Aggregate, Carbonate and Limestone Models 

Model RMSE 
Statewide All-Aggregate Model1 13.45 
Statewide All-Aggregate Model2 15.74 

Statewide Carbonate-Aggregate Model1 12.19 
Statewide Carbonate-Aggregate Model2 12.17 
Statewide Limestone Aggregate Model 1 15.41*/10.11 
Statewide Limestone Aggregate Model 2 10.18 

This high 15.41 RMSE value was skewed by the NY325 sample, which exhibited a residual 
error of over 60 (see Table 4.16). With NY325, an apparent outlier removed, the RMSE was 
reduced to 10.11.  
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Figure 4.5: NY Limestone Sample Model 1 (NYAIR_Limestone_Model1_Tight) 

 

 
Figure 4.6: NY Limestone Sample Model 2 (NYAIR_Limestone_Model2_Tight) 
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Table 4.16: NY Limestone Aggregate Model 1 Results  
(NYAIR_Limestone_Model1_Tight) 

Sample Predicted Observed Residual 
NY503_m3_737R_L_022020.mat 0.6 2.3 1.7 
NY501_m3_313R_L_022020.mat 20.5 3.7 -16.8 
NY111_m_1_30RS.mat 18.3 16.3 -2.0 
NY131_m_4_11R.mat 22.2 19.4 -2.8 
NY100_m_8_15RS_Becraft.mat 21.2 22.4 1.2 
NYSM19_M3.mat 22.2 23.5 1.3 
NY117_m_8_15RS.mat 25.4 24.1 -1.3 
NY323_m3_57R_L_022020.mat 6.8 26.9 20.1 
NY315_m2_53R_17AR30_Lx_022020.mat 11.5 30.4 18.9 
NY312_m4_43RS_L_022020.mat 20.0 35.2 15.2 
NY134_m_4_12RS.mat 32.4 35.9 3.5 
NYSM01_M3.mat 42.2 36.5 -5.7 
NY431_m3_57RS_L_022020.mat 14.1 40.0 25.9 
NY136_m_5-7RS.mat 38.5 42.0 3.5 
NY102_m2_815RS_L_NS__022020.mat 48.7 42.6 -6.1 
NY325_m2_29R_L_022020.mat -17.8 43.5 61.3 
NY104_m3_815RS_L_022020.mat 33.5 45.8 12.3 
NYSM03_M3.mat 48.8 46.5 -2.3 
NY142_mn_8_15RS.mat 45.5 46.7 1.2 
NY119_m3_815RS_L_022020.mat 47.6 48.1 0.5 
NYSM05_M3.mat 40.9 50.4 9.5 
NY138_m_8-15RS.mat 39.9 51.1 11.2 
NY140_m_8-15RS.mat 48.6 51.3 2.7 
NY144_mn_8_15RS.mat 45.4 54.6 9.2 
NY108_m_8_17R.mat 61.3 54.7 -6.6 
NY147_mn_8_15RS.mat 53.2 54.7 1.5 
NY106_m3_815RS_L_022020.mat 45.9 55.2 9.3 

 
Table 4.17. NY Limestone Aggregate Model 2 Results  

(NYAIR_Limestone_Model2_Tight) 
Sample Predicted Observed Residual 
NY502_m3_734R_L_022020.mat -10.2 4.0 14.2 
NY505_m3_948R_L_022020.mat 3.0 4.0 1.0 
NY135_m_5-7R.mat 7.6 14.1 6.5 
NY320_m3_410R_L_022020.mat 43.7 17.3 -26.4 
NY324_m3_29RS_L_022020.mat 28.8 19.6 -9.2 
NY109_m_8_17RS.mat 17.1 24.8 7.7 
NY337_m3_817RS_L_022020.mat 32.6 27.3 -5.3 
NY101_m2_815RS_L_ALST__022020.mat 27.8 33.5 5.7 
NYSM04_M3.mat 45.2 33.8 -11.4 
NY313_m3_410RS_L_022020.mat 48.2 35.1 -13.1 
NY305_mn_9_6R_L.mat 29.2 36.5 7.3 
NYSM02_M3.mat 37.6 37.5 -0.1 
NY103_m2_815RS_L_PE__022020.mat 44.3 41.1 -3.2 
NY444_m3_817R_L_022020.mat 41.3 41.3 0.0 
NY137_m_8-15RS.mat 52.6 41.4 -11.2 
NY112_m_4_3RS.mat 26.8 43.4 16.6 
NY118_m_8_15R.mat 53.5 43.6 -9.9 
NY139_m_8_15RS.mat 44.9 43.6 -1.3 
NY107_m_8_15RS.mat 38.8 44.4 5.6 
NY105_m_8_15RS.mat 37.1 51.6 14.5 
NYSM06_M3.mat 53.2 51.6 -1.6 
NY145_mn_8-15RS.mat 55.3 53.8 -1.5 
NY143_mn_8_15RS.mat 49.8 54.3 4.5 
NY124_mn__1_23R.mat 64.0 57.0 -7.0 
NY141_mn_8-15RS.mat 42.5 57.2 14.7 
NY133_m_4_12RS.mat 47.6 60.0 12.4 
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4.2.4 Modeling AIR in R83 Quarry Limestones 

To test the hypothesis that local Source models could generate an effective AIR model, the 

Research Team collected a total of 24 limestone samples from the R83 quarry for AIR model 

development.38 Twelve samples were randomly selected for the calibration set and 12 for the 

validation set. Two R83 models were developed. The calibration and validation samples used for 

the first model (Model 1) were swapped for use in the second model (Model 2). Model 1 and 

Model 2 calibration models and the validation test results are graphically presented in Figure 4.3 

and Figure 4.4, respectively. The calibration model shows trend lines that exhibit high correlation 

with the calibration set sample data. A tabulated list of the test results for Models 1 and 2 are 

respectively presented in Table 4.19 and Table 4.20. Only one sample, in Model 2, exceeded a 

10% AIR residual error. 

The Model 1 calibration, shown in Figure 4.7, has a noticeable gap between AIR value 25 

and 43. The test samples predictions were very accurate, except for this range. Similarly, the Model 

2 calibration, shown in Figure 4.8 has no data for AIR values less than 30. The test sample 

predictions were accurate, except for values less than 30. The Calibrated R83 Limestone Model is 

an accurate model. It is predictive within the range of values used in the respective calibration 

models. An increase in sample numbers and the range of AIR values that could be encountered at 

R83 would almost certainly improve the current spectral database. RMSE results for all New York 

models are tabulated in Table 4.12. The R83 models exhibit the lowest RMSE values; and the 

RMSE magnitudes values suggest an effective model. 

 
Table 4.18: RMSE Values for All-Aggregate, Carbonate and Limestone Models 

Model RMSE 
Statewide All-Aggregate Model1 13.45 
Statewide All-Aggregate Model2 15.74 

Statewide Carbonate-Aggregate Model1 12.19 
Statewide Carbonate-Aggregate Model2 12.17 
Statewide Limestone Aggregate Model 1 10.11 
Statewide Limestone Aggregate Model 2 10.18 

R83 Quarry Limestone Model 1 3.55 
R83 Quarry Limestone Model 2 6.95 

 
38 Twenty-three samples were independently collected by the Research Team with the assistance of the quarry owner (Callanan). 
One E. Kingston sample was supplied by NYSDOT (NYSM05). 
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Figure 4.7: R83 Quarry Limestone AIR Model 1 

 

 
Figure 4.8: R83 Quarry Limestone AIR Model 2 
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Table 4.19: R83 Quarry Limestone Model 1 Results (NYAIREKModel 1_Tight) 
Samples Predicted Observed Residual 
NY101_m2_815RS_L_ALST__022020.mat 37.0 33.5 -3.5 
NY103_m2_815RS_L_PE__022020.mat 39.3 41.1 1.8 
NY137_m_8-15RS.mat 36.1 41.4 5.3 
NY112_m_4_3RS.mat 44.4 43.4 -1.0 
NY118_m_8_15R.mat 36.8 43.6 6.8 
NY139_m_8_15RS.mat 37.7 43.6 5.9 
NY107_m_8_15RS.mat 42.5 44.4 1.9 
NYSM05_M3.mat 50.0 50.4 0.4 
NY105_m_8_15RS.mat 47.3 51.6 4.3 
NY145_mn_8-15RS.mat 53.3 53.8 0.5 
NY143_mn_8_15RS.mat 55.3 54.3 -1.0 
NY141_mn_8-15RS.mat 56.0 57.2 1.2 

 
Table 4.20: R83 Quarry Limestone Model 2 Results (NYAIREKModel 2_Tight) 

Samples Predicted Observed Residual 
NY111_m_1_30RS.mat 34.1 16.3 -17.8 
NY100_m_8_15RS_Becraft.mat 31.8 22.4 -9.4 
NY117_m_8_15RS.mat 31.3 24.1 -7.2 
NY102_m2_815RS_L_NS__022020.mat 41.1 42.6 1.5 
NY104_m3_815RS_L_022020.mat 41.4 45.8 4.4 
NY142_mn_8_15RS.mat 49.0 46.7 -2.3 
NY119_m3_815RS_L_022020.mat 46.6 48.1 1.5 
NY138_m_8-15RS.mat 48.3 51.1 2.8 
NY140_m_8-15RS.mat 48.8 51.3 2.5 
NY144_mn_8_15RS.mat 51.7 54.6 2.9 
NY147_mn_8_15RS.mat 54.7 54.7 0.0 
NY106_m3_815RS_L_022020.mat 46.8 55.2 8.4 

 

4.2.5 Modeling New York State’s SM Samples 

NYSDOT independently collected and provided 21 unknown samples to the Research 

Team to be used as test samples. The list of 21 samples is shown in Table 4.21. This list includes 

nine Non-carbonate Rock sample mixtures, three Dolomites, two Marbles, and seven Limestones; 

all size fractionated and washed and collected from 18 different quarry sources.39  

 
39 SM samples provided by NYSDOT were all prewashed and size fractionated; however, no calibration samples previously 
provided by NYSDOT were prewashed or size fractionated. 



71 

Table 4.21: Unknown SM Sample Data 

 
 

No suitable calibration model was available to evaluate this diverse mix of samples. The 

Research Team unsuccessfully attempted to develop a model with these SM samples. The SM 

samples were not effectively included in any available calibration dataset.40  

4.3 NYSDOT Findings and Conclusions 

4.3.1 Findings 

• AIR Super Models, using statewide samples generated models with very 

good overall correlation, but lacked accuracy for many samples that were 

not sufficiently represented by the calibration set data. 

• Model accuracy and predictive efficiency were found to improve by 

selecting calibration samples with common lithology, common origins; and 

representative of the full range of AIR values encountered in test samples. 

• An effective AIR Source Model for the R83 quarry was developed.  

 
40 The “random collection” of the SM samples by NYSDOT and the diverse lithology associated with the SM samples had no 
relationship to any previously collected calibration samples provided by NYSDOT.  

Test No. SLT Code Size AIR or AIR Range (%) AIR Median Comments Lithology
SM19033533 SM1 +1/8 36.5 36.5 washed Limestone
SM19033537 SM2 +No.4 37.5 37.5 washed Limestone

19GP0604 SM5 -3/4 +1/8 (12.5F2) 50.4 50.4 washed Limestone
SM20002834 SM6 -3/4 +1/8 (9.5F2) 51.6 51.6 washed Limestone
SM19068070 SM4 -3/4 +1/8 (9.5F2) 33.8 33.8 washed Limestone
SM19069766 SM3 -3/8 +1/8 (6.3F2) 46.5 46.5 washed Limestone
SM18013613 SM13 -3/8 +No.30 79.0 - 75.1 77.05 washed Mix, Sandsone, Shales, Quartzite
SM18031031 SM14 -3/8 +No.30 65.6 - 75.3 70.45 washed Mix, Sandsone, Shales, Quartzite
SM18031032 SM15 -3/8 +No.30 68.0 - 63.8 65.9 washed Mix, Sandsone, Shales, Quartzite
SM18034601 SM16 -3/8 +No.30 0.9 - 1.0 0.95 washed Marble Crushed
SM18044842 SM17 -3/8 +No.30 13.6 - 10.9 12.25 washed Dolomite
SM18048069 SM18 -3/8 +No.30 77.0 - 74.0 75.5 washed Mix, Sandsone, Shales, Quartzite
SM18052453 SM19 -3/8 +No.30 21.8 - 25.1 23.45 washed Limestone
SM18053437 SM20 -3/8 +No.30 7.5 - 9.7 8.6 washed Dolomite
SM18059183 SM21 -3/8 +No.30 4.8 - 6.4 5.6 washed Dolomite
SM19012296 SM7 -3/8 +No.30 0.4 - 1.2 0.8 washed Marble
SM19019480 SM8 -3/8 +No.30 66.7 - 67.7 67.3 washed Mix Metamorphic
SM19031563 SM9 -3/8 +No.30 72.7 -78.7 75.7 washed Mix Metamorphic
SM19044467 SM10 -3/8 +No.30 75.0 - 78.4 76.7 washed Sandsone and Shales
SM19044933 SM11 -3/8 +No.30 67.5 - 68.8 68.15 washed Mix Metamorphic
SM19063970 SM12 -3/8 +No.30 68.4 - 71.1 69.75 washed Sandsone and Shales
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4.3.2 Conclusions 

• Laser scanning can effectively be used as a quality control tool to quantify 

AIR in NYS aggregate and has potential to compliment or replace current 

AIR lab testing procedures. 

• AIR model development requires that close attention be given to sample 

selection during model calibration to ensure that the calibrated sample 

population will represent the test sample population.  

• AIR Source Model (restricted lithological) development would be the 

simplest AIR modeling strategy; however, expanded Super Model 

development is feasible with focused sample calibration testing that account 

for the lithological categories of the calibration samples. 
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Chapter 5: Ohio Laser Scanning Analysis 

5.1 Ohio Scanning Objectives 

The Ohio Department of Transportation (ODOT) effort focused on determining whether 

laser scanning could be used to quantify the chert and shale content in ODOT aggregate sources. 

ODOT specifications limit the quantity of chert and shale, respectively, in selected applications. 

Percent chert content or shale content in Ohio is typically accomplished by petrographically 

analyzing an aggregate sample, segregating by hand, either the chert or shale particles, followed 

by weighing the recognizable chert or shale in the sample of a known size. 

The ODOT laser scanning plan involved several tasks: 

• Collecting aggregate samples known to contain deleterious materials (either 

chert or shale). 

• Petrographically segregating the chert and shale in each sample from the 

parent source; and respectively quantifying the percent content of chert and 

shale present in each source. 

• Shipping the chert (or shale) along with their respective parent sources to 

the laser laboratory for scanning to establish spectral patterns associated 

with the chert, shale, and all parent aggregates.  

• Re-blending each chert and each shale with their respective parent sources 

in known blending ratios. 

• Scanning the re-blended mixtures to determine whether models could be 

developed to predict the percent of either chert or shale present in samples 

with known blending ratios.  

The goal was to develop a “Counting Model” that could be used to count the number of 

times during a laser scan of an unknown parent source, that the laser pulse would hit a chert or 

shale particle. The percentage of “positive hits” could be used to quantify the deleterious material 

content in the sample. Successful model development would be demonstrated if the model(s) were 

able to successfully predict the correct proportion of chert or shale in pre-prepared samples with 

known proportions. 
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5.1 Ohio Aggregate Samples and Sources 

ODOT’s Office of Materials Management was instrumental in the development of the 

aforementioned laser scanning plan and supplying samples that could be used to develop the 

“Counting Model.” As part of this effort, ODOT supplied several aggregate samples to the 

Research Team, from selected source locations, that contained chert and/or shale. For each source 

location, ODOT provided one parent material sample, with an accompanying bag of chert or shale 

that was petrographically removed from each parent source. The Research Team selected several 

samples for scanning. The sample names (ID) and aggregate types (lithology) for the chert and 

shale samples used in the analysis are presented in Table 5.1. A total of 13 Ohio aggregate samples 

were included in the chert analysis and a total of 5 aggregate samples were included in the shale 

analysis. The chert parent aggregate samples included two limestones (OH21 and OH38), one 

dolostone (OH33), and 10 gravel samples. All of the shale parent aggregate samples were gravels. 

 
Table 5.1: Parent Aggregate Samples 

Parent Aggregate Samples for Chert Parent Aggregate Samples for Shale 
Sample ID Type (Lithology) Sample ID Type (Lithology) 

OH21 Limestone OH131 Gravel 
OH33 Dolostone OH136 Gravel 
OH35 Gravel OH138 Gravel 
OH37 Gravel OH141 Gravel 
OH38 Limestone OH146 Gravel 
OH41 Gravel -- -- 
OH42 Gravel -- -- 
OH51 Gravel -- -- 
OH53 Gravel -- -- 
OH54 Gravel -- -- 
OH56 Gravel -- -- 
OH57 Gravel -- -- 
OH61 Gravel -- -- 

 

Photographs showing one parent gravel sample (OH56) and its corresponding chert 

sample, and one parent gravel sample (OH146) and its corresponding shale sample are respectively 

presented in Figure 5.1 and Figure 5.2. 
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Figure 5.1: OH56 Parent Gravel and Light Chert Sample 

 

 
Figure 5.2: OH146 Parent Gravel and Shale Sample 

 

Each of the 13 parent aggregate samples associated with the chert samples and similarly 

each of the five parent aggregate samples associated with the shale samples, listed in Table 5.1, 

were scanned. In addition, each of the chert and each of the shale samples were scanned.41  

A photograph of the OH33 parent aggregate and its associated chert sample (OH33LC) are 

shown in Figure 5.3, in their respective scanning trays prior to laser scanning. The small quantity 

of chert is shown in the smaller tray. 

 
41 Sample scanning generated, for the chert analysis, 13 parent aggregate spectra and 13 light chert spectra; and 5 parent aggregate 
spectra and 5 shale spectra for the shale analysis. 
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Figure 5.3: OH33 Parent Aggregate and Light Chert in Laser Scanning Trays 

 

The total number of scans and laser shots per scan for the chert and shale calibration set 

samples are listed in Table 5.2 and Table 5.3, respectively. Each sample listed in the table was 

scanned multiple times. Approximately 40 to 80% of the individual laser shots were used for each 

sample during the model calibration and testing process.42  

 
Table 5.2: Chert Model Calibration Sets: Parent and Chert Scans 

Parent Aggregate Sample Chert Sample 
Sample 

ID 
Number 
of Scans 

Total Number 
of Shots 

Total Shots 
Used 

Sample 
ID 

Number of 
Scans 

Total Number 
of Shots 

Total Shots 
Used 

OH21 9 9843 3701 OH21LC 9 6491 4693 
OH33 8 9514 3397 OH33LC 12 6030 4326 
OH35 6 7279 3431 OH35LC 11 5465 4005 
OH37 8 9057 3878 OH37LC 6 2415 1636 
OH38 4 4950 2266 OH38LC 4 638 609 
OH41 9 10728 4670 OH41LC 4 638 552 
OH42 5 7329 3357 OH42LC 5 1681 1429 
OH51 4 4590 2283 OH51LC 5 1623 1003 
OH53 -------------------------------------------------No Data ------------------------------------------------- 
OH54 6 6634 2580 OH54LC 7 4287 3144 
OH56 4 4479 2683 OH56LC 5 2019 1665 
OH57 4 4910 2851 OH57LC 5 2259 1331 
OH61 4 4943 3557 OH61LC 5 2284 1468 

  

 
42 This was due to the signal to noise ratio (SNR) filtering process (see Section 2.2) 
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Table 5.3: Shale Model Calibration Sets: Parent and Shale Scans 
Parent Aggregate Sample Shale Sample 

Sample 
ID 

Number 
of Scans 

Total Number 
of Shots 

Total Shots 
Used 

Sample 
ID 

Number 
of Scans 

Total Number 
of Shots 

Total Shots 
Used 

OH131 3 3751 1562 OH131S 2 1708 1206 
OH136 3 3433 1086 OH136S 2 2087 1100 
OH138 3 3607 1148 OH138S 2 2081 892 
OH141 3 3920 1388 OH141S 2 2048 816 
OH146 3 3820 1412 OH146S 2 2052 1066 

5.2 Ohio Chert and Shale PLS Counting Models 

5.2.1 OH Counting Model Calibration and Testing 

Special Binary Partial Least Square Regression (PLSR) “Counting” Models were 

respectively calibrated for both the chert and shale analyses. A binary model, as previously 

described, is a model that predicts one of two outcomes (e.g., yes or no, pass or fail, or 1 or 0).43 

In most PLSR models, the sample spectra used to develop and predict the model output is 

based on an average of many individual laser shots. In a “Counting Model” each laser shot, and 

the spectrum associated with that shot, is independently evaluated by the model. So, for example, 

if 1000 laser shots are taken at an aggregate sample, the model will count how many laser shots 

were a Yes and how many shots were a No; or how many shots scored a y-value of 1 and how 

many shots scored a y-value of 0. Each respective model type was calibrated by setting the y-

values of all chert or shale particle spectra to 1 and the y-values of all parent aggregates to 0.44 

In summary, the steps in the modeling process for chert were as follows: 

• Scan chert samples, listed in Table 5.2, to define a chert spectrum associated 

with each parent. 

• Scan all respective parent aggregates to define a parent aggregate spectrum 

associated with each of the chert samples. 

• Re-blend each parent and chert sample in pre-selected proportions by 

weight. 

 
43 A more detailed description of PLSR Binary models is presented in Section 2.4.1. 
44 The y-value is the dependent variable of the PLSR model, which is the model output. 



78 

• Scan the blended samples and count the number of shots identified as chert 

and parent. 

• Use the percentages of identified chert shots as a surrogate to the percent 

weight of chert in the sample. 

• Establish the best calibration by selecting the VAD value that results in the 

maximum true positive tests and minimum false negative tests for each 

model. 

The same steps were employed in the shale modeling development effort. In this case, the 

shale and corresponding parent aggregates used are listed in Table 5.3. 

5.2.2 Spectral Data Filtration and Transformation 

The ODOT modeling effort was the most challenging in the TPF Program. The primary 

objective was to develop spectral patterns that could be employed to “clearly” differentiate 

between parent and chert and/or shale particles for “each laser shot.” No other modeling effort 

required shot-to-shot decision-making. All other modeling efforts made use of averaged spectral 

patterns derived from 1000–1500 shot scans. The spectrum of each individual laser shot is affected 

by both the heterogeneity of the underlying stone structure and the heterogeneity associated with 

the morphology of the laser-induced plasma. The result is a spectral pattern distribution with high 

individual shot variability. Since ODOT chert and shale maximum allowable levels are as low as 

1 percent in certain applications, small errors in shot-to-shot decisions could easily result in 

mischaracterization of the chert and/or shale content of parent aggregate sample.  

During the modeling effort several data processing techniques were investigated to 

magnify the differences between the parent aggregates and the chert and shale samples. The final 

methodology included the following: 

• Signal to Noise Ratio Spectra Screening  

The Signal to Noise Ratio (SNR) screening process was previously described in Section 

2.2. This SNR screen was used to remove poor laser spectra from the analysis. 
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• Line Model Selection 

Individual line models were developed, in lieu of full spectra to reduce the excess noise in 

the model. Line models are models in which the input spectra have been reduced from 

14336 wavelengths to a pre-selected number of wavelengths, which by examination yield 

better results. Line models were previously described in Section 2.3. 

• Spectral Scaling and Data Transformation   

Finally, spectral scaling and data transformation techniques were employed in an attempt 

to magnify the spectral differences between the Parent Material (P) and Deleterious 

Material (D) at each wavelength. The intent of spectral scaling and data transformation of 

the Ohio sample spectral data are conceptually illustrated in Figure 5.4.  

 

 
Figure 5.4: Spectral Data Transformation 

 

Figure 5.4 depicts a histogram containing original spectral data for P aggregate and 

D aggregate on the left side of the graphic; and transformed data on the right side. The histogram 

height of each respective sample is intended as a measure of the similarity of the respective spectral 

patterns. The closer the heights of each sample, the more similar the respective spectra. Ideally, 

the less similar the P and D patterns, the easier it is to discriminate between the two materials. 

There is measurable difference between spectral patterns in the original (or raw) spectral data, 

shown on the left side of Figure 5.4; however, after transformation there is much greater difference, 

as shown on the right side of the figure. The transformed pattern data facilitates the differentiation 

process, which results in improved counting model accuracy. 

The spectral data preprocessing techniques employed by the Research Team involved mean 

centering and standardization. This procedure transforms the spectral data from the raw intensity 
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values recorded by the spectrometer to standardized or normalized values. This transformation 

occurs by employing the equation below:45 

Z = (x-µ)/σ 
Equation 5.1  

Where: 

Z = the final normalized value, 

X = the value to be normalized,  

µ = the arithmetic mean, or average of the distribution, and 

σ = the standard deviation of the distribution. 

In the Ohio aggregate scans, the mean of approximately 1500 laser shots were used to 

characterize the aggregate. This means that each wavelength (W) had a sample population of 1500 

values from which to calculate the average intensity value (µ) and the standard deviation (σ) of the 

population. Since there are 14336 different wavelengths comprising each laser shot spectra, each 

wavelength will have its own sample population with a unique arithmetic mean (µ) and standard 

deviation (σ). It is common practice to organize spectral data in a matrix as shown in Table 5.4.46 

 
Table 5.4: Tabular Laser Shot Intensity Array by Wavelength 

  Wavelengths (W) 
Shot W1 W2 W3 W4 … Wm 
s1 X11 X12 X13 X14 … X1m 
s2 X21 X22 X23 X24 … X2m 
s3 X31 X32 X33 X34 … X3m 
s4 X41 X42 X43 X44 … X4m 
… ... ... ... ... … … 
sn Xn1 Xn2 Xn3 Xn4 … Xnm 
             

Average µ1 µ2 µ3 µ4 … µm 
Standard Deviation σ1 σ2 σ3 σ4 … σm 

 

 
45 The Standardization procedure employs the Standardize function used in Microsoft Excel. 
46 The laser shot intensity for a given wavelength in Table 5.4 is represented by Xnm, where n represents the specific laser shot and 
m the measured wavelength. For the Ohio scans n goes from 1 to 1500 and m represents 14336 recorded wavelengths. Table 5.4 
would have 1500 rows and 14336 columns. The average of all the shots for a particular wavelength is represented by µm and σm, 
respectively. For example, X43 represents the intensity associated with the fourth laser shot and wavelength W3. 
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Mean centering and standardization are sometimes referred to as normalization or scaling.47 

Each intensity value is scaled using µ and σ  associated with the intensity distribution defined by 

the specific wavelength. The procedure can be illustrated by focusing on the first laser shot (s1), in 

the first row, and the first wavelength (W1), in the first column. The intensity value X11 is scaled 

or normalized, yielding a scaled value Z11 by subtracting the intensity X11 by the average of all 

the W1 intensities µ1 and dividing this value by the standard deviation σ1 of all W1 laser shot 

intensities, or: 
 (Z11) = (X11 - µ1) / (σ1)  Equation 5.2 

The ratio of Z11 to the raw intensity value X11 is referred to as the Scaling Factor for this 

laser shot. Every intensity in the entire array (1500 x 14336) has a unique scaling factor. 

Standardization (or the development of Scaling Factors) requires a sample population from which 

both µ and σ can be calculated. Each Ohio analysis uniquely had two sample types and as a result 

two distinct sample populations. These include the Parent and Chert, and the Parent and Shale. A 

special data transformation step was employed in the Ohio analysis to magnify the differences 

between the Parent aggregates and the chert and shale aggregates. This involved the calculation of 

µ and σ at each wavelength using only the Parent Aggregate samples and applying these Parent 

Aggregate scaling factors to the corresponding intensities of both the Parent as well as the Chert 

and Shale samples at each respective wavelength. This procedure resulted in a magnification of 

the differences between the scaled Parent Aggregate intensities and the chert and shale intensities.48 

5.2.3 Source Models and Super Models 

The samples provided by ODOT presented the opportunity to develop two types of 

deleterious material counting models. The first is referred to as an Ohio Source Model. In a Source 

Model separate chert and shale counting models are independently calibrated for each local 

aggregate source. The second model type is referred to as an Ohio Super Model. In this model it 

 
47 Spectral scaling has the effect of giving all wavelengths equal weight in the analysis, thereby eliminating the bias that might be 
exhibited by one or more wavelengths in the spectrum 
48 Developing a scaling factor (SF) using the parent material is statistically appropriate because the parents are all part of the same 
sample population of parent material. Applying this Parent SF to the chert or shale samples is statistically questionable, since the 
chert and shale samples represent completely different sample population; nonetheless this procedure provides EMPIRICAL benefit 
since it helps to differentiate the two populations (parent and chert) in a PLS Binary analysis. 
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is assumed that one chert model and one shale counting model can be developed for all aggregate 

parent sources lumped together.49  

A hypothetical multidimensional graphical representation of a Source Model clustering 

arrangement is presented in Figure 5.5, and a multidimensional graphical representation of a Super 

Model clustering arrangement is presented in Figure 5.6. In a Source Model, the cherts and/or 

shale are more closely related to the parent source than they are to other cherts or shale from other 

sources. In a Super Model, the cherts and/or shales cluster together in their own grouping that 

differ from the parent sources.  

 

 
Figure 5.5: Graphical Representation of Parent and Chert Groupings in a Source Model 

 

 
Figure 5.6: Graphical Representation of Parent and Chert Groupings in a Super Model 

 
49 Reference was previously made to Source and Super Models in Section 2.4.3 Sample Collection Requirements 
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It is noteworthy that the benefits of an effective Super Model far outweigh the benefits of 

a Source Model. With an effective Super Model any sample can be scanned, regardless of its 

source, and the quantity of chert or shale in the sample can be quantified. One model can cover the 

whole State of Ohio. A Source Model requires a separate model for each aggregate source. During 

the initial examination of the spectral data, it was believed that Source Models would be needed 

to accurately quantify chert or shale content. Subsequently it was discovered, after pre-processing 

the spectral data, that effective Super Models are possible. These findings are presented in the 

following sections.  

5.3 Test Validation Approach and SLT Scanning 

The efficacy of the calibrated counting models was tested by blending known percentages 

of chert or shale with each parent sample, scanning the blended sample and then comparing the 

predicted percentages (counts) to the known percentages. Shot counting validation testing is 

dependent on SLT scanning of an accurately blended sample that the laser can target. The SLT 

design is such that the laser only targets the surface layer of a given sample place in any sample 

tray. An OH146 shale sample with 1.25% shale in a sample tray is shown in Figure 5.7. 

 

 
Figure 5.7: Blended Shale (1.25%) in OH146 Sample Tray 

 

When shale is blended with a parent sample it is unlikely that the quantity of shale found 

in the top layer of the sample will comprise exactly 1.25% of the surface. This problem can be 
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remedied by scanning multiple samples during any analysis and remixing the new sample in the 

tray, prior to each replicate scan. As a result, a necessary requirement in SLT generated counts is 

that multiple samples be remixed and tested. The average count results when this approach is 

employed will converge on the true count value. It was unfortunate that during the chert and shale 

scanning program, which was initiated in early 2020, the desired number of mixed sample scans 

could not be undertaken.50 Despite the low number of scans, which hampered the analysis, the 

Ohio chert and shale counting models that were developed were highly predictive. 

5.4 Ohio Chert Counting Model Results 

It was originally intended to prepare five different mixing concentrations of chert for each 

parent aggregate. It was also intended that each blend would be scanned somewhere between 5 

and 10 times. Two factors interfered with this plan. The first was that in all cases sufficient chert 

was not available to prepare blends for each mix fraction; and the second that the COVID crisis 

impacted the ODOT chert testing schedule and forced a reduction in the planned scanning 

schedule. The quantity of chert blended into each parent sample is listed in Table 5.5. Blended 

chert quantities ranged from 0 to 10 percent. The number of scans associated with each sample are 

listed in the tables below. 

 
Table 5.5: Ohio Chert Model Test: Sample Blends 
Sample ID Lithology Percent Chert  

OH21 Limestone 0, 1.25, 2.50, 5.0, 10.0 
OH33 Dolostone 0, 2.50, 5.0, 10.0 
OH35 Gravel 0, 1.25, 2.50, 5.0, 10.0 
OH37 Gravel 0, 1.25, 2.50, 5.0, 10.0 
OH38 Limestone 0, 5.0 
OH41 Gravel 0, 1.25, 2.50 
OH42 Gravel 0, 5.0, 10.0 
OH51 Gravel 0, 2.50, 5.0, 10.0 
OH53 Gravel No samples run 
OH54 Gravel 0, 1.25, 2.50, 5.0, 10.0 
OH56 Gravel 0, 1.25, 2.50, 5.0, 10.0 
OH57 Gravel 0, 1.25 
OH61 Gravel 0, 5.0, 10.0 

 
50 This was due to a laser lab shut down that required a truncated program due to pandemic and other administrative issues.  
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5.4.1 Chert Count Source Model Results 

Tabular and graphical results for each parent aggregate chert model are presented below. 

Each table provides for each aggregate source, the average count results, and the standard deviation 

of the results for the number of laser scans, for each blend scanned. Graphical results display the 

chert count model prediction. The standard deviation range and a dashed horizontal line 

representing the quantity (%) chert introduced into the scanned sample.51  

Chert Source Model Sample: 0% Chert 

Mean Parent aggregate counting model results, listed in Table 5.6 for 0% chert samples, 

were all 0.7% and below. The standard deviations around each mean value were all less than 

0.32%. Graphical projections of the tabulated data presented in Figure 5.8 show all counting model 

predictions relative to the 0% target line. The model effectively predicted negligible chert levels 

for all sources.  

 
Table 5.6: Tabular Model Prediction: 0% Chert 
Sample Average Standard Deviation Scans 
OH21 0.0% 0.0% 3 
OH33 0.0% 0.0% 3 
OH35 0.70% 0.12% 3 
OH37 0.23% 0.32% 3 
OH41 0.0% 0.0% 3 
OH42 0.05% 0.07% 2 
OH51 0.0% 0.0% 2 
OH54 0.0% 0.0% 3 
OH56 0.0% 0.0% 2 
OH61 0.0% 0.0% 2 

 

 
51 It is noteworthy that the Parent Sample tested was assumed to have no chert in it prior to mixing pre-defined amounts into the 
sample for Counting Model validation. The veracity of this assumption could not be verified; but if residual amounts of chert were 
present, it was assumed that the actual levels would to be very low (<1%). 
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Figure 5.8: Graphical Source Model Predictions: 0% Chert 

 

Chert Source Model Sample: 1.25% Chert 

Mean Parent aggregate counting model results, listed in Table 5.7 for 1.25% chert samples, 

ranged from 0.1% to 1.6%. The standard deviations around each mean value were 0.42% or less. 

Graphical projections of the tabulated data presented in Figure 5.9 show the relationship of the 

counting model estimates to the 1.25% target line. All sample predictions were below 1.6%. Each 

sample was scanned only twice, well below an ideal number, nonetheless the model results were 

judged to be highly predictive. 
 

Table 5.7: Tabular Model Prediction: 1.25% Chert 
Sample Average Standard Deviation Scans 
OH21 0.30% 0.42% 2 
OH35 0.20% 0.28% 2 
OH37 1.6% 0.07% 2 
OH54 0.20% 0.14% 2 
OH56 1.5% 0.28% 2 
OH57 0.10% 0.14% 2 

 

 
Figure 5.9: Graphical Source Model Predictions: 1.25% Chert 
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Chert Source Model Sample: 2.5% Chert 

Mean Parent aggregate counting model results, listed in Table 5.8 for 2.5% chert samples 

ranged from 0.1% to 5.4%. The standard deviations around each mean value ranged from a low of 

0.07% to a high of 4.4%. Graphical projections of the tabulated data presented in Figure 5.10 show 

that all counting model sample estimates were all close to the 2.5% target line.  

 
Table 5.8: Tabular Source Model Predictions: 2.5% Chert 

Sample Average Standard Deviation Scans 
OH21 0.13% 0.23% 3 
OH33 2.8% 2.2% 3 
OH35 1.7% 1.8% 3 
OH37 4.4% 1.3% 3 
OH51 0.55% 0.78% 2 
OH54 0.45% 0.07% 2 
OH56 5.4% 1.0% 2 

 

 
Figure 5.10: Graphical Source Model Predictions: 2.5% Chert 

 

Chert Source Model Sample: 5% Chert 

Mean Parent aggregate counting model results, listed in Table 5.9 for 5% chert samples 

ranged from 0.4 to 11.1%. The standard deviations around each mean value ranged from a low of 

0.5% to a high of 8.8%. Graphical projections of the tabulated data presented in Figure 5.11 show 

all counting model sample estimates relative to the 5% target line. Some of the samples 

overpredicted the 5% target line. Each sample was scanned only three times, again well below a 

desirable number. Nonetheless these model results were also deemed predictive. 
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Table 5.9: Tabular Source Model Predictions: 5% Chert 
Sample Average Standard Deviation Scans Sample 
OH21 3.4% 2.8% 3 OH21 
OH33 11.1% 8.8% 3 OH33 
OH35 1.4% 1.2% 3 OH35 
OH37 10.8% 2.5% 3 OH37 
OH38 9.4% 8.4% 3 OH38 
OH42 9.9% 7.9% 3 OH42 
OH51 5.1% 3.7% 3 OH51 
OH54 4.1% 0.56% 3 OH54 
OH56 9.5% 3.8% 3 OH56 
OH61 0.40% 0.40% 3 OH61 

 

 
Figure 5.11: Graphical Source Model Predictions: 5% Chert 

 

Chert Source Model Sample: 10% Chert  

Mean Parent aggregate counting model results, listed in Table 5.10 for 10% chert samples 

ranged from 2.2% to 17.4%. The standard deviations around each mean value ranged from a low 

of 1.8% to a high of 9.2%. Graphical projections of the tabulated data presented in Figure 5.12 

show all counting model sample estimates relative to the 10% target line. These model results were 

judged to be very effective. 

 
Table 5.10: Tabular Source Model Predictions: 10% Chert 

Sample Average Standard Deviation Scans 
OH21 6.9% 1.8% 3 
OH33 10.6% 9.2% 3 
OH35 9.0% 7.6% 3 
OH37 11.8% 6.8% 3 
OH42 13.5% 3.9% 3 
OH51 15.3% 6.4% 3 
OH54 3.1% 3.6% 3 
OH56 17.4% 3.9% 3 
OH61 2.2% 2.4% 3 
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Figure 5.12: Graphical Source Model Predictions: 10% Chert 

5.4.2 Chert Count Super Model Results 

Chert Super Model Sample: 0% Chert 

Mean Parent aggregate counting model results, listed in Table 5.11 for 0% Super Model 

chert samples ranged from 0.33% to 2.1%. The standard deviations around each mean value were 

less than 0.85%. Graphical projections of the tabulated data presented in Figure 5.13 show all 

counting model sample estimates relative to the 0% target line. Two results were greater than 1%. 

The remainder less than 1%. With just three scans for each sample, the results suggest that an 

effective chert Super Model is possible. 

 
Table 5.11: Tabulated Super Model Predictions: 0% Chert 

Sample Predicted Standard Deviation Scans 
OH21 0.67% 0.35% 3 
OH33 0.33% 0.06% 3 
OH35 0.40% 0.20% 3 
OH37 1.3% 0.85% 3 
OH42 0.13% 0.06% 3 
OH51 0.30% 0.14% 2 
OH54 0.27% 0.46% 3 
OH56 0.65% 0.21% 2 
OH61 2.1% 0.64% 2 
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Figure 5.13: Graphical Super Model Predictions: 0% Chert 

 

Chert Super Model Sample: 1.25% Chert 

Mean Parent aggregate counting model results, listed in Table 5.12 for 1.25% Super Model 

chert samples ranged from 0.45% to 1.8%. The standard deviations around each mean value were 

all less than 0.57%. Graphical projections of the tabulated data presented in Figure 5.14 show all 

counting model sample estimates relative to the 1.25% target line. These model results were 

considered to be highly predictive. 

 
Table 5.12: Tabulated Super Model Predictions: 1.25% Chert 

Sample Predicted Standard Deviation Scans 
OH21 1.0% 0.49% 2 
OH35 1.0% 0.57% 2 
OH37 0.90% 0.14% 2 
OH54 0.85% 0.35% 2 
OH56 0.45% 0.21% 2 
OH57 1.8% 0.28% 2 

 

 
Figure 5.14: Graphical Super Model Predictions: 1.25% Chert 
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Chert Super Model Sample: 2.5% Chert 

Mean Parent aggregate counting model results, listed in Table 5.13 for 2.5% Super Model 

chert samples ranged from 0.3% to 5.2%. The standard deviations around each mean value ranged 

from a low of 0.1% to a high of 2.1%. Graphical projections of the tabulated data presented in 

Figure 5.15 show all counting model sample estimates relative to the 2.5% target line. Again, these 

Super Model results were considered to be highly predictive. 

 
Table 5.13: Tabulated Super Model Predictions: 2.5% Chert 

Sample Predicted Standard Deviation Scans 
OH21 0.3% 0.10% 3 
OH33 0.9% 0.40% 3 
OH35 2.2% 2.00% 3 
OH37 5.2% 1.10% 3 
OH51 1.0% 0.50% 2 
OH54 0.9% 0.60% 2 
OH56 4.8% 0.50% 2 

 

 
Figure 5.15: Graphical Super Model Predictions: 2.5% Chert 

 

Chert Super Model Sample: 5% Chert 

Mean Parent aggregate counting model results, listed in Table 5.14 for 5% Super Model 

chert samples ranged from 3.3% to 14.8%. The standard deviations around each mean value ranged 

from a low of 2.0% to a high of 12.4%. Graphical projections of the tabulated data presented in 

Figure 5.16 show all counting model sample estimates relative to the 5% target line. Most samples 

overpredicted the 5% target line.  
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Table 5.14: Tabulated Super Model Predictions: 5% Chert 
Sample Predicted Standard Deviation Scans 
OH21 9.4% 5.1% 3 
OH33 10.6% 7.3% 3 
OH35 3.3% 2.5% 3 
OH37 9.7% 2.0% 3 
OH38 14.8% 12.4% 3 
OH42 9.8% 7.5% 3 
OH51 5.8% 4.0% 3 
OH54 4.9% 0.60% 3 
OH56 6.8% 3.4% 3 
OH61 9.8% 3.1% 3 

 

 
Figure 5.16: Graphical Super Model Predictions: 5% Chert 

 

Chert Super Model Sample: 10% Chert 

Mean Parent aggregate counting model results, listed in Table 5.15 for 10% Super Model 

chert samples ranged from 3.7% to 22.6%. The standard deviations around each mean value ranged 

from a low of 4% to a high of 11.4%. Graphical projections of the tabulated data presented in 

Figure 5.17 show all counting model sample estimates relative to the 10% target line. Most samples 

overpredicted the 10% target line. 

 
Table 5.15: Tabulated Super Model Predictions: 10% Chert 

Sample Predicted Standard Deviation Scans 
OH21 22.2% 9.8% 3 
OH33 8.6% 4.6% 3 
OH35 14.6% 11.4% 3 
OH37 9.2% 5.1% 3 
OH42 15.6% 5.4% 3 
OH51 22.6% 8.9% 3 
OH54 3.7% 4.0% 3 
OH56 10.8% 5.1% 3 
OH61 16.5% 6.5% 3 



93 

 
Figure 5.17: Graphical Super Model Predictions: 10% Chert 

5.5 Ohio Shale Counting Model Results 

The quantity of shale blended into each parent sample is listed in Table 5.16. Blended shale 

quantities ranged from 0 to 5.0 percent. 
 

Table 5.16: Ohio Shale Model Test Sample Blends 
Sample ID Lithology Percent Shale 

OH131 Gravel 0, 1.25, 5.0 
OH136 Gravel 0, 1.25, 5.0 
OH138 Gravel 0, 1.25, 5.0 
OH141 Gravel 0, 1.25, 5.0 
OH146 Gravel 0, 1.25, 5.0 

5.5.1 Shale Count Source Model Results 

Shale Source Model Sample: 0% Shale 

Mean Parent aggregate counting model results, listed in Table 5.17 for 0% shale target 

ranged from 0.73% to 1.3%. The standard deviations around each mean value were all less than 

0.87%. Graphical projections of the tabulated data presented in Figure 5.18 show all counting 

model sample estimates relative to the 0% target line. The results show somewhat elevated shale 

levels above the 0% target line.  

 
Table 5.17: Tabulated Source Model Predictions: 0% Shale 
Sample Predicted Average Standard Deviation Scans 
OH131 0.83% 0.85% 3 
OH136 0.73% 0.67% 3 
OH138 1.3% 0.87% 3 
OH141 0.73% 0.55% 3 
OH146 0.90% 0.26% 3 
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Figure 5.18: Graphical Source Model Predictions: 0% Shale 

 

Shale Source Model Sample: 1.25% Shale 

Mean Parent aggregate counting model results, listed in Table 5.18 for the 1.25% shale 

target ranged from 0.5% to 3.7%. The standard deviations around each mean value were less than 

1.4%. Graphical projections of the tabulated data presented in Figure 5.19 show all counting model 

sample estimates relative to the 1.25% target line. The results show accurate model predictions. 

 
Table 5.18: Tabulated Source Model Predictions: 1.25% Shale 

Sample Predicted Average Standard Deviation Scans 
OH131 0.50% 0.0% 2 
OH136 3.7% 1.4% 2 
OH138 0.95% 0.21% 2 
OH141 0.90% 0.71% 2 
OH146 1.1% 0.42% 2 

 

 
Figure 5.19: Graphical Source Model Predictions: 1.25% Shale 
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Shale Source Model Sample: 5% Shale 

Mean Parent aggregate counting model results, listed in Table 5.19 for the 5% shale targets 

ranged from 0.43% to 7.6%. The standard deviations around each mean value ranged from a low 

of 0% to a high of 1.9%. Graphical projections of the tabulated data presented in Figure 5.20 show 

all counting model sample estimates relative to the 5% target line. The results show some very 

accurate counts and some high and low predictions, but all model predictions are in an expected 

range and additional scans would be expected to improve model accuracy. 

 
Table 5.19: Tabulated Source Model Predictions: 5% Shale 
Sample Predicted Average Standard Deviation Scans 
OH131 0.43% 0.40% 3 
OH136 2.1% 0.0% 1 
OH138 7.6% 0.21% 2 
OH141 3.9% 2.4% 2 
OH146 5.2% 1.9% 2 

 
Figure 5.20: Graphical Source Model Predictions: 5% Shale 

5.5.2 Shale Count Super Model Results 

Shale Super Model Sample: 0% Shale 

Mean Parent aggregate counting model results, listed in Table 5.20 for 0% Super Model 

shale samples ranged from 0% to 1.4%. The standard deviations around each mean value were all 

below 0.75%. Graphical projections of the tabulated data presented in Figure 5.21 show all 

counting model sample estimates relative to the 0% target line. The results show reasonably 

accurate model predictions. 



96 

Table 5.20: Tabulated Super Model Predictions: 0% Shale 
Sample Predicted Standard Deviation Scans 
OH131 1.4% 0.60% 3 
OH136 0% 0% 3 
OH138 0.07% 0.12% 3 
OH141 0.53% 0.61% 3 
OH146 0.73% 0.75% 3 

 

 
Figure 5.21: Graphical Super Model Predictions: 0% Shale 

 

Shale Source Model Sample: 1.25% Shale 

Mean Parent aggregate counting model results, listed in Table 5.21 for 1.25% Super Model 

shale samples ranged from 0.15% to 1.0%. The standard deviations around each mean value were 

less than 0.42%. Graphical projections of the tabulated data presented in Figure 5.22 show all 

counting model sample estimates relative to the 1.25% target line. The results show that the model 

slightly underpredicted the results, but within reasonable accuracy. 

 
Table 5.21: Tabulated Super Model Predictions: 1.25% Shale 

Sample Predicted Standard Deviation Scans 
OH131 1.00% 0.28% 2 
OH136 0.40% 0.28% 2 
OH138 0.15% 0.21% 2 
OH141 0.70% 0.42% 2 
OH146 0.65% 0.35% 2 
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Figure 5.22: Graphical Super Model Predictions: 1.25% Shale 

 

Shale Super Model Sample: 5% Shale 

Mean Parent aggregate counting model results, listed in Table 5.22 for 5% Super Model 

shale samples ranged from 0% to 6.8%. The standard deviations around each mean value ranged 

from a low of 0% to a high of 4.9%. Graphical projections of the tabulated data presented in Figure 

5.23 show all counting model sample estimates relative to the 5% target line. The results show 

effective predictions with the exception of OH136. Only one sample blend was scanned for this 

sample.  

 
Table 5.22: Tabulated Super Model Predictions: 5% Shale 

Sample Predicted Standard Deviation Scans 
OH131 3.9% 4.9% 3 
OH136 0.0% 0.0% 1 
OH138 2.6% 0.92% 2 
OH141 3.0% 2.3% 2 
OH146 6.8% 0.64% 2 

 

 
Figure 5.23: Graphical Super Model Predictions: 5% Shale 
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5.6 ODOT Findings and Conclusions 

5.6.1 Findings 

• Spectral fingerprints were identified that distinguished between chert and 

shale and their respective Parent Aggregate. 

• Scaling and transforming the raw spectral data produced modified spectra 

that effectively magnified the difference between the parent aggregate and 

the chert and shale improving model accuracy. 

• Using the modified spectra, predictive binary-line counting models were 

developed for both chert and shale.  

• The transformed data resulted in the effective development of Super 

Models. 

• These Super Models could detect chert and/or shale down to a level of one 

percent in the parent sample. 

• Increasing the number of laser shots and scans included in the model 

increases the predictive accuracy of the models. 

5.6.2 Conclusions 

• Laser scanning can be used as a quality control tool to identify chert and/or 

shale in ODOT aggregate at specification limits defined by ODOT. 

• One Statewide Chert and one Shale Super Model is sufficient to 

differentiate and predict chert or shale content. (It is unnecessary to develop 

a model for each aggregate source.)  
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Chapter 6: Maryland Laser Scanning Analysis 

6.1 Maryland Scanning Objectives  

The Maryland effort focused on two inquiries raised by MDSHA: 

• Can laser scanning spectral data be used to identify the specific quarry from 

which an unknown aggregate sample was mined? 

• Can laser scanning spectral data be correlated with British Pendulum 

Numbers (ASTM E303, 2018) and/or Dynamic Friction Values (DFV) 

(MSMT 416, 2016). Both test methods have been used by the Maryland 

State Highway Administration (MDSHA) to evaluate the friction properties 

of Maryland aggregate.  

6.2 Maryland Aggregate Samples and Sources  

MDSHA supplied a total of 42 aggregate samples that were collected from approved 

MDSHA quarry sources for scanning. These samples, which were collected in early 2018, 

comprised a data set that included at least 42 different quarries and at least 18 different lithological 

categories. A complete list of samples provided by MDSHA is presented in Table 6.1. Table 6.1 

includes information on the lithology of each sample, the quarry source, categorization as a 

carbonate or noncarbonate rock, BPN number, and DFVs. In 2019, MDSHA supplied an additional 

five samples that were separately collected from one or more of the original 42 sources. These 

samples are referred to as MDA, MDB, MDC, MDD, MDE. No information was provided 

regarding the source or properties of these samples. 
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Table 6.1: Maryland Samples 

 
 

Sample ID Lithology Quarry Carb or Noncarb BPN DFV
MD1_mLS_Mill.mat No Data Millville NC 24 ND
MD2_mBasal_Jeff.mat Basalt Jefferson County NC 33 34
MD3_mSerp_York.mat Serpentine York NC 31 44
MD4_mGran_Cecil.mat Granite Cecil Co. NC 32 39
MD5_mND_ND.mat Limestone No quarry data C ND ND
MD6_mLS_Alleg.mat Limestone Allegheny C 30 26
MD7_mLS_Mineral.mat Limestone Mineral C 28 31
MD8_mSS_LS_Wash.mat Limestone Washington C 29 34
MD9_mGneiss_ND.mat Gneiss No quarry data NC 34 42
MD10_mLS_Migmaite_Hartford.mat Migmatite Hartford NC 28 35
MD11_mLS_Freder.mat Limestone Frederick C 32 32
MD12_mBas_ND.mat Basalt No quarry data NC 36 24
MD13_mSchist_Cecil.mat Schist Cecil NC 33 43
MD14_mMarble_Balt.mat Marble Baltimore C 33 44
MD15_mLS_Mineral.mat Limestone Mineral C ND ND
MD16_mSand_Tucker.mat Sand Tucker NC ND ND
MD17_mBasalt_Fair.mat Basalt Fairfax NC 30 47
MD18_mSerp_York.mat Serpentinite York NC 32 36
MD19_mDiabase_Berks.mat Diabase Berks NC 32 43
MD20_mHornfells_Berks.mat Hornfels Berks NC 33 47
MD21_mNoncarb_Somer.mat Limestone Somerset C 38 40
MD22_mLS_Freder.mat Limestone Frederick C 28 32
MD23_mDiabase_Laudon.mat Diabase Laudon NC 31 43
MD24_mLS_Wash.mat Frederick Washington C 26 22
MD25_mLS_Wash.mat Limestone Washington C 27 17
MD26_mGneiss_Berks.mat Gneiss Berks NC 31 ND
MD27_mSand_Franklin.mat Sand Franklin NC ND ND
MD28_mLS_Franklin.mat Limestone Franklin C 29 24
MD29_mCarb_Lancaster.mat Carbonate Lancaster C 32 40
MD30_mCarb_Adams.mat Carbonate Adams C 31 43
MD31_mCarb_Somer.mat Carbonate Somerset C 39 53
MD32_mND_Adams.mat No Data Adams NC 33 45
MD33_mCarb_Dauphin.mat Carbonate Dauphin C 28 20
MD34_mLS_Lebanon.mat Limestone Lebanon C 26 21
MD35_mGravel_Cumb.mat Gravel Cumberland C 34 46
MD36_mCarb_Freder.mat Carbonate Frederick C 33 29
MD37_mLS_York.mat Limestone York C 26 29
MD38_mLS_York.mat Limestone York C 28 25
MD39_mND_Fairfax.mat No Data Fairfax NC 32 45
MD40_mNCarb_Harford.mat Gabro- Diorite Harford NC 29 48
MD41_mDiabase_Berks.mat Diabase Berks NC ND 40
MD42_mBasalt_Fauquier.mat Basalt Fauquier NC 31 52
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6.3 MD Source Identification Modeling 

As noted above, in 2019 MDSHA collected five samples, in addition to the 42 samples 

collected and provided to the Research Team in 2018. These samples were labelled MDA, MDB, 

MDC, MDD, and MDE. The only information available to the Research Team, regarding these 

samples, were that each sample was collected from one of the 42 quarries, each of which were 

respectively associated with one of the 42 samples collected in 2018 and listed in Table 6.1. The 

challenge to the Research Team, depicted in Figure 6.1, was to develop a model that could predict 

which source-sample each of the five unknown samples were associated with.52 

 

 
Figure 6.1: Aggregate Source Model Challenge 

 

To characterize the spectral pattern associated with the MD samples, each of 42 samples 

(MD1-MD42) was scanned between seven and nine times; and each of the five unknown samples 

was scanned between five and seven times. Each scanning run comprised between 1000 and 1500 

laser shots. 

6.3.1 Source Identification Model Development 

A Source Identification (SI) model is a model designed to match the spectral fingerprint of 

an unknown sample with spectral patterns known to be present in a known quarry source.  

The hypothetical PC Score Plot, presented in Figure 6.2 provides a way to conceptually 

grasp the manner in which the SI model was constructed. Figure 6.2 provides a conceptual 

projection of spectral data and the clustered aggregate fields associated with eight MD 

aggregates.53 The eight hypothetical aggregates (MD1, MD4, MD7, MD12, MD18, MD20, MD34, 

and MDB) form eight separate aggregate fields or groupings. Each group represents one MD 
 

52 It is important to note that MD1-MD42 and MDA-MDE samples were not from the same sample batch. They were collected 
from their respective quarry sources during different sampling years. 
53 This graphical depiction is generated using a Principal Components Analysis (PCA) Score Plot described in Section 2.4.1. 
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source or quarry. The dots shown within each respective grouping represent the individual samples 

making up the group. The individual samples are spectral patterns of the repeated scans recorded 

within that sample grouping. Their spatial distribution represents the degree of heterogeneity 

within that grouping. The grouping clusters that are closer together are more closely related. This 

means that the spectral fingerprints of the aggregates that make up these clusters are more similar 

than aggregates in groupings that are farther away. For example, examining Figure 6.2, the 

aggregates making up the MD1 grouping can be expected to exhibit greater geochemical similarity 

to aggregates in the MD34 grouping than aggregates in the MD18 grouping. 

 

 
Figure 6.2: MD Sample Grouping Score Plot 

 

When the Unknown Sample spectra (MDB), highlighted by the downward-pointing solid 

arrow in the figure, is included in the analysis, the identity of MDB can be projected based on the 

proximity of MDB to other clusters. In the example presented, it would be safe to assume that 

MDB comes from the same source as MD7. While the above description is theoretically correct, 

actual aggregate spectra in many cases will not segregate themselves into such neat groupings 

where “graphical” multivariate projections can easily differentiate between the groupings.54 

 
54 The lithology of the samples will, in most cases, determine the degree of grouping resolution. For example, limestones in one 
group and gravel in a second group and sand in a third group would generate three distinct groups. If all sources were from limestone 
quarries, then the groupings between the individual samples in each quarry sources might be less distinct.  
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To generate greater model resolution, a two-stage matching algorithmic process was 

employed.55 The first stage is designed to select the grouping “least likely” to match the Unknown 

sample. In the hypothetical example depicted in Figure 6.2, this would be grouping MD20, 

highlighted by the upward-pointing slanted line arrow. MD20 is the grouping that is farthest from 

the Unknown sample (MDB). MD20 is labelled FN, which stands for Farthest Neighbor (FN) 

Grouping. This FN Grouping is then introduced into a PLS Binary Model to verify that the FN 

Grouping is not similar to MDB. If it is not similar, then this FN Grouping is removed from 

consideration as a potential candidate for the Unknown (MDB) source and the two-stage process 

is repeated. The primary objective of this process is to screen one grouping at a time, reducing the 

number of matching options available in each step, and determining which of the remaining 

groupings is most similar to the unknown sample. The second stage binary model, as noted above, 

double checks whether the “Farthest Neighbor” group is similar to the Unknown sample. 

The SI binary model was calibrated by designating the FN Group with a y-value of 1 and 

all other known groupings with a y-value equal to 0. The model was then tested by introducing the 

Unknown sample (MDB), the test sample, into the model and calculating the y-values for all 

samples with a focus on the MDB grouping y-value.56 If the model predicted an MDB y-value 

close to 1, this would mean that there was similarity between MDB and the FN Group. If closer to 

0 then this would mean little similarity; and this FN Group would be eliminated from the data set 

and further consideration. 

A new PCA score plot is generated with the remaining groupings and a second Farthest 

Neighbor grouping is selected. The binary PLS model once again checks the second Farthest 

Neighbor grouping and if the Unknown sample y-value output is not close to 1, this second 

grouping is eliminated, and the process moves on to the next step and continues to repeat itself 

until the model completes its analysis of all samples. The algorithmic process is separately 

comparing each Grouping to the Unknown Grouping and simultaneously weaning down the 

number of samples under consideration. This weaning process magnifies the differences in the 

 
55 The two-stage algorithmic model employs a PCA first stage model and a second stage PLS model 
56 The model output for each sample is a y value somewhere between approximately 0 and 1. An unknown sample exhibiting a y 
value close to 1.  
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remaining samples thereby providing greater model resolution. A flow diagram of the SI model 

algorithm is presented in Figure 6.3.57 

 

 
Figure 6.3. MD SI Model Algorithm 

 

In summary, the MD Source Identification model outlined above, compares each group in 

turn to the other groups, removing a group once it has been identified. By comparing only one 

group to all the other beds, the unique characteristics of the group are better recognized by the 

model. Also, because groups are sequentially removed from the model, the model is able to 

 
57 The order of selection of each group in the algorithm is not random. It is based on an analysis of PCA models (score plots) to 
identify beds that are readily identifiable as Farthest Neighbor Groups. Those Groups that are most distinct are modeled first in the 
hierarchy. The remaining group spectra become more like each other as one proceeds through the modeling hierarchy by design.  
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recognize the small differences between groups later in the model sequence. When all groups are 

compared simultaneously, these small differences are insignificant and thus the groups are 

indistinguishable. 

6.3.2 SI Model Calibration 

SI model calibration involved several steps: 

• Comparing the efficacy of individual line models versus full spectra models 

• Screening spectra to remove poor shots with SNR screens 

Five models were calibrated: one for each of the unknown samples (MDA, MDB, MDC, 

MDD, and MDE). Each model was tested by running trials using known samples as unknowns.58 

The models that were selected for MDA-MDE testing are listed in Table 6.2. 

 
Table 6.2: MD SI Model Data Pre-processing 

Unknown 
Sample 

Spectra 
Selection 

SNR 
Screen 

Scaling/ 
Transforming Data Model Name* 

MDA 337 Lines Yes No MDA_WHCTight with SNR_N1.mat 
MDB 337 Lines Yes No MDB_WHCTight with SNR_N1.mat 
MDC Full Yes No MDC_Full_SNR.mat 
MDD Full Yes No MDD_Full_SNR_NoScale.mat 
MDE 739 Lines Yes No MDE_ARNP_SNR_REMU_N1.mat 

* The Model Names provided are shorthand codes used by the Research Team to keep track of the specific 
screening tools employed and have no other relevance. 

6.3.3 SI Model Results 

The source group predictions for each of the five models are presented in Table 6.3. On 

September 2, 2020, the Research Team submitted the MDA-MDE predictions to Maryland 

personnel and the MDSHA provided the results. 

  

 
58 This type of calibration is sometimes referred to as a cross validation. As an example, in these trials, the available spectra from 
a known sample (for example MD10) would be divided up whereby half of the MD spectra are used to represent the unknown 
sample (MD10u) and the remaining half used to represent the known sample (MD10k). The model would then be tested to see 
whether it predicts that MD10u = MD10k. 
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Table 6.3: Model Predictions and Results 

Unknown 
Sample 

Research 
Team 

Prediction 

Actual 
Reported by 

MDSHA 
MDSHA Comments Lithology 

MDA MD7 MD6 MD6 & MD7 are very similar Limestone 

MDB MD15 MD7 MD7 & MD15 are very similar Limestone 

MDC MD13 MD13 Correct Schist 

MDD MD23 MD23 Correct Diabase 

MDE MD41 MD41 Correct Diabase 

 

The source of three (MDC, MDD, and MDE) of the five unknowns were accurately 

predicted. MDA and MDB sources were missed; but MDSHA reported that the model prediction 

were sources located in geographically close quarries and within the same formations as the actual 

source groups. The laser scanning model prediction results presented in Table 6.3 exceeded 

expectations. Predictions were made by: 

• Collecting 42 samples, each weighing approximately 20 pounds, from 42 

different source locations in 2018, 

• Scanning each of the 42 samples, 

• Collecting five samples, each weighing approximately 20 pounds, from five 

of the 42 original 2018 sample locations in 2019, 

• Scanning each of the five samples, and 

• Using the five 2019 sample scans, to match the forty-two 2018 sample 

scans. 

The small sample sizes used to characterize each specific quarry source, the collection of 

the original 42 samples in 2018, and the five test samples collected a year later testified to the 

efficacy of the models developed during this analysis and the potential of laser scanning to target 

unknown aggregate sources, based on generated spectra.  
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6.4 Modeling British Pendulum Number and Dynamic Friction Value 

Two test procedures that MDSHA has used to assess aggregate friction quality include: 

• British Pendulum Number (BPN) 

ASTM E303 (2018), Standard Test Method for Measuring Surface 

Frictional Properties Using the British Pendulum Tester, and 

• Dynamic Friction Value (DFV) 

Maryland State Highway Administration, Laboratory Method of Predicting 

Frictional Resistance of a Blend of Aggregates, MSMT 416 (2016).59  

The purpose of the Maryland BPN/DFV analysis was to determine whether laser spectra 

could be used as a surrogate to predict either BPN or DFV numbers and potentially replace or 

reduce the need to conduct these tests on a regular basis. The 42 Carbonate and Noncarbonate 

samples, listed in Table 6.1, were used in the development of the BPN and DFV models. 

6.4.1 BPN and DFV Correlation and Sensitivity 

Both BPN and DFV are measures of pavement/aggregate friction. The higher each number 

or value, the greater the friction. As a result, BPN numbers and DFV values would be expected to 

correlate with each other. This means that for samples with both BPN and DFV data, the higher 

the BPN number the higher the DFV value and the lower the BPN number, the lower the DFV 

value. To examine if this was the case, the Research Team analyzed 18 carbonate samples and 17 

noncarbonate samples, included in Table 6.1, for which BPN and DFV data were available. 

The results of this analysis for carbonate samples are presented in Figure 6.4. An 

examination of Figure 6.4 reveals that BPN and DFV values for carbonate samples do correlate. 

From samples 1 to 18, BPN and DFV values move in tandem. Peaks and troughs occur together.  

Sensitivity in modeling is a term used to describe how independent variables will impact a 

dependent variable; or in this case, how sensitive BPN numbers and DFV values are to a change 

in aggregate friction. An examination of Figure 6.4 reveals that DFV is more sensitive to changes 

in friction compared to BPN. For example, the MD sample labelled 11 has more than twice the 

DFV value than MD sample labelled 8. Sensitivity, in this case can be quantified by examining 
 

59 Based on, ASTM E660-90 (2015), Standard Practice for Accelerated Polishing of Aggregates or Pavement Surfaces Using a 
Small-Wheel, Circular Track Polishing Machine, ASTM International, West Conshohocken, PA, 2015. 
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the relationship between DFV and BPN values as shown in Figure 6.5, for carbonate samples. 

Figure 6.5 shows the positive correlation between DFV and BPN and also the slope of the 

trendline, which is approximately 2. 

 

 
Figure 6.4: Carbonate BPN and DFV Correlation 

 

 
Figure 6.5: Carbonate Samples: DFV vs BPN Sensitivity and Correlation 

 

The results of this analysis for noncarbonate samples are presented in Figure 6.6. An 

examination of Figure 6.6 reveals that BPN and DFV values for noncarbonate samples do not 
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correlate well. From samples 1 to 18, BPN and DFV values do not always move in tandem. Peaks 

and troughs do not necessarily occur together. The relationship between DFV and BPN for 

noncarbonate samples are shown in Figure 6.7. There is no correlation between DFV and BPN and 

the data suggest that DFV exhibits less sensitivity than BPN, as measured by the slope of the 

trendline. 

 

 
Figure 6.6: Noncarbonate BPN and DFV Correlation 

 

 
Figure 6.7: Noncarbonate Samples: DFV vs BPN Sensitivity and Correlation 
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6.4.2 MD BPN and DFV Model Development 

This initial data evaluation, presented above, suggested that carbonate modeling would be 

more effective than noncarbonate modeling and that DFV modeling would be more effective than 

BPN modeling. 

Nonetheless, Partial Least Square Regression (PLSR) models were developed for both 

BPN and DFV. Recall from Section 2.4.2, that a PLSR model is a multivariate model that is 

analogous to a familiar linear regression model, where a linear relationship between an 

independent x-value (or variable) and a dependent y-value (or variable) is established. Once this 

relationship is established it is then possible to predict the y-value in the linear model, given any 

x-value input. In the PLSR multivariate case, the X-value is the sample spectrum. PLSR models 

were developed to predict BPN and DFV values. 

BPN and DFV models were calibrated and tested by initially using all samples together 

and subsequently dividing the available sample set into carbonate and non-carbonate categories, 

which were modeled independently. The 42 samples, listed in Table 6.1, were used in the analysis. 

6.4.3 BPN and DFV Total Carbonate and Non-Carbonate Sample Modeling 

Using all the carbonate and non-carbonate aggregate samples, listed in Table 6.1, models 

for BPN and DFV were calibrated and tested. This was undertaken by selecting one-half of the 

available samples for the calibration model and one-half of the available samples for the test model. 

The initial calibration set, and validation set samples comprised the first model calibrated. A 

second model was calibrated by reversing the calibration and validation sample sets.60 

Results of the BPN calibration and test set model runs are presented in Figure 6.8 and 

Figure 6.9, for Model 1 and Model 2, respectively. The graphical results, shown on the left side of 

the figure, represents the BPN calibration model. The calibration models exhibited good 

correlation; however, the test set models themselves were not highly correlated. While the 

validation tests did not yield very good correlation, the residual errors in the BPN value 

predictions, embedded in tabular form in Figure 6.8 and Figure 6.9 were very low. These low 
 

60 BPN and DFV values were not available for all 42 Maryland samples. Thirty-seven samples had BPN data and 36 samples DFV 
data. Every other sample was randomly chosen for inclusion in either the calibration set or test set. The samples were then swapped 
to develop a second calibration and test set. This was done to verify that the sample selection process did not introduce bias into 
the analysis.  
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residual errors in the validation test suggest the spectral BPN models developed could have 

predictive potential, but further analysis would be required to verify this finding. 

 

 
Figure 6.8: BPN Carbonate and Non-carbonate Model 1 Calibration and Test Results 

 

 
Figure 6.9: BPN Carbonate and Non-carbonate Model 2 Calibration and Test Results 
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DFV calibration and test set model run results are presented in Figure 6.10 and Figure 6.11, 

for Model 1 and Model 2, respectively. The calibration and model test results shown were similar 

to the BPN models. 

 

 
Figure 6.10: DFV Carbonate and Non-carbonate Model 1 Calibration and Test Results 

 

 
Figure 6.11: DFV Carbonate and Non-carbonate Model 2 Calibration and Test Results 
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6.4.4 BPN and DFV Carbonate Sample Modeling 

Using all the carbonate aggregate samples, listed in Table 6.1, models for BPN and DFV 

were calibrated and tested. The results of the BPN Model 1 calibration model and validation test 

results are presented in Figure 6.12; and the BPN Model 2 calibration model and validation test 

results in Figure 6.13.61 The carbonate calibration models exhibited improved test set predictions, 

and regression line coefficients compared to the combined carbonate and non-carbonate 

calibrations. While the validation tests did not yield very good correlation, the residual errors in 

the BPN value predictions, embedded in tabular form in Figure 6.12 and Figure 6.13 were very 

low. The low residual errors in the validation test suggest the spectral carbonate models developed 

have predictive potential. 

 

 
Figure 6.12: BPN Carbonate Model 1 Calibration and Test Results 

 

 
61 Two models were calibrated for each sample analysis. The first model was calibrated by randomly selecting one-half of the 
available samples for the calibration model and one-half of the available samples for the test model. A second model was calibrated 
by reversing the calibration and validation sample sets. 
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Figure 6.13: BPN Carbonate Model 2 Calibration and Test Results 

 

The results of the DFV Model 1 calibration and validation test are presented in Figure 6.14, 

and the DFV Model 2 calibration and validation results in Figure 6.15. DFV test set data exhibited 

much better correlations than BPN models. 

 

 
Figure 6.14: DFV Carbonate Model 1 Calibration and Test Results 
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Figure 6.15: DFV Carbonate Model 2 Calibration and Test Results 

6.4.5 BPN and DFV Non-Carbonate Sample Modeling 

Using all the non-carbonate aggregate samples, listed in Table 6.1, models for BPN and 

DFV were calibrated and tested. BPN results for Model 1 and Model 2 are respectively presented 

in Figure 6.16 and Figure 6.17; and DFV results for Model 1 and Model 2 are respectively 

presented in Figure 6.18 and Figure 6.19. Neither BPN nor DFV non-carbonate models exhibited 

very effective predictive test set results. 
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Figure 6.16: BPN Non-carbonate Model 1 Calibration and Test Results 

 

 
Figure 6.17: BPN Non-carbonate Model 2 Calibration and Test Results 
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Figure 6.18: DFV Non-carbonate Model 1 Calibration and Test Results 

 

 
Figure 6.19: DFV Non-carbonate Model 2 Calibration and Test Results 
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6.4.6 DFV Carbonate Category Sample Modeling 

MDSHA makes use of a DFV categorization system to classify the friction value, which 

determines the permissible applications in which the aggregate may be used (MSMT 416, 2016). 

This categorization system is divided into three broad groupings. They include High, Standard, 

and Low, designated as HDFV, SDFV, and LDFV categories. The categories are further 

subdivided by MDSHA into a series of categories and subcategories (Categories I-VI) presented 

below in Table 6.4. The measured aggregate DFV value determines which category the aggregate 

falls into. For example, a DFV value of 42 would designate the aggregate as a Category III 

aggregate.  

The modeling strategy employed examined whether laser-generated spectra could be used 

to predict the appropriate DFV Grouping by comparing the model category prediction to the actual 

DFV sample value that MDSHA provided to the Research Team. 

 
Table 6.4: Dynamic Friction Value Groupings and Categories 

DFV 
Groupings DFV Categories DFV Value 

HDFV 
Category I 
Category II 
Category III 

50 
45 
40 

SDFV Category IV 
Category V 

30 
25 

LDFV Category VI 20 

 

Separate PLSR models were developed (calibrated and tested) to predict DFV values for 

carbonate and non-carbonate MDSHA aggregate samples.62 In this DFV Category analysis, 

“individual sample spectra” were used in the model development process.63 The carbonate and 

non-carbonate modeling results are respectively displayed in Figure 6.20 and Figure 6.21.64 Each 

figure displays the following: 

 

 
62 Modeling carbonate and noncarbonate samples independently, rather than combining the carbonate and noncarbonate samples 
yielded better results.  
63 In previously presented analyses, all scanned samples were merged into one sample spectrum.  
64 Each figure contains two lines: one solid line and one dashed line. The solid line represents the linear regression line (line of best 
fit for the data) and the dashed line represents the ideal regression line where x = y. 
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• Rectangular boundaries defining the DFV Grouping limits, superimposed 

on a graph depicting the Observed (actual MD reported DFV values) versus 

the Model Predictions. 

• Plots of the DFV results of each individual sample scan (e.g., each of 42 

samples [MD1-MD42] were scanned between seven and nine times and the 

modeled results of each scan are shown independently; not averaged or 

combined).65 

• The results of Model 1 and Model 2, respectively, shown in Figure 6.20 and 

Figure 6.21.66 

 

 
Figure 6.20: Carbonate Sample DFV Grouping and Category Results 

 

 
65 The projection of each sample independently as opposed to one merged sample, provided the means to incorporate the 
heterogeneity inherent in the samples and the model predictions. 
66 These are Models 1 and 2 previously described, where half of the samples were selected for the calibration set and the remaining 
samples were used to test the calibrated model; and the second model, where the calibration and tests set samples were reversed. 
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Figure 6.21: Non-Carbonate Sample DFV Grouping and Category Results 

 

The efficacy of the models was determined by testing the Group and Categorization 

prediction success rate. These Grouping results, illustrated in Figure 6.20 and Figure 6.21, show 

14 of 18 correct grouping predictions in the two Carbonate models combined; and 15 of 17 correct 

grouping predictions in the two Non-Carbonate models combined.67 These results are extremely 

promising and suggest that laser scanning can effectively be used to identify DFV aggregate 

groupings. Additional sample scanning to supplement this initial database would almost certainly 

improve the very good success rates shown. 

Individual scans were utilized in the analysis to generate a range of DFV values predicted 

by the individual scans for the same sample. These data reveal information about the spectral 

heterogeneity for each Sample ID. The DFV values can be seen to cluster in relatively tight ranges, 

shown in Figure 6.20 and Figure 6.21, but the model projections imply a measurable distribution 

to the scanned data. In this analysis, a Grouping Match was determined if one or more of the scans 

was projected into the one of the category ranges. 

 
67 A Grouping match was determined if one or more of the scans was predicted to be in the appropriate range.  
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6.5 MDSHA Findings and Conclusions 

6.5.1 Findings 

• MD Source Identification models effectively predicted the source of 

unknown aggregate materials from 42 possible quarry sites.  

• MD models developed could not effectively predict BPN but could 

effectively predict DFV from carbonate aggregate models. 

• MD DFV models have the potential to effectively predict LDFV, SDFV, 

and HDFV friction categories. 

6.5.2 Conclusions 

• Laser scanning models can be used to identify the quarry source of unknown 

aggregate materials. 

• Limestones, most likely due to their similarity, were more difficult to 

differentiate than noncarbonate rock. 

• Laser scanning models can be used to predict DFV values of carbonate 

aggregate and MDSHA friction categories of both carbonate and 

noncarbonate aggregate. 
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Chapter 7: Concluding Overview 

Research and development activities over the past decade (described in Chapter 1) have 

demonstrated the laser scanning has the potential to provide a level of quality control that is not 

possible using existing materials testing methods. The Transportation Pooled Fund (TPF) study 

described herein presented a series of independent laser scanning studies to further examine the 

utility of this technology. The TPF effort was undertaken with the assistance four State agencies 

(Kansas, New York, Ohio, and Maryland). Each State effort, respectively, focused on specific 

State-related issues, and was designed to determine whether aggregate scanning could be 

beneficial compared to existing methodologies.  

The Kansas Department of Transportation (KDOT) effort (see Chapter 3) provided test 

results that demonstrated that laser scanning could provide an alternative approach to the current 

KDOT D-cracking test method. D-cracking susceptibility could be determined by Laser scanning 

in one to two hours, compared to the multi-month testing protocols currently employed. The 

KDOT effort also demonstrated analytical procedures that could be employed to establish whether 

known aggregate sources are the source material for final production blends. 

The New York State Department of Transportation (NYSDOT) effort (see Chapter 4) 

provided test results that show that laser scanning provides a means to determine whether 

aggregate sources meet NYSDOT AIR specifications within an hour or two without the need to 

conduct corrosive acid dissolution procedures that require special venting and concentrated acid 

management. 

The Ohio Department of Transportation (ODOT) effort (see Chapter 5) provided test 

results that suggest that laser scanning could be used within hours to determine the level of shale 

and chert contamination in aggregate sources and whether such sources are suitable for use ODOT 

construction products (Portland cement concrete). Such a test procedure could replace ODOT’s 

cumbersome petrographic particle counting or gravitational separation procedures, both of which 

exhibit questionable accuracy. 

The Maryland State Highway Administration (MDSHA) effort (see Chapter 6) provided 

test results that demonstrated that laser scanning provides a potential method to predict the quarry 
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source of unknown aggregate materials. MDSHA does not have an alternative test method to make 

such a determination. In addition, laser scanning results have the potential to generate Dynamic 

Friction Value (DFV) models to effectively predict MDSHA LDFV, SDFV, and HDFV friction 

categories. 

The emission spectra associated with laser scanning (described in Chapter 1) represent the 

data input to multivariate chemometric models (described in Chapter 2) that must be developed 

for each aggregate property evaluated. These models must be calibrated and validated as part of 

the technology development process. The results presented in each State chapter presented in this 

report, show that such models can be calibrated with a dedicated planning and laser scanning effort. 

Future work however will be required on the part of State Agencies to commit personnel resources 

for technology training and laser scanning QC/QA planning to oversee the development of the 

spectral database; and the acquisition of a laser scanning system to physically scan the State’s 

aggregate. 

Laser scanning technology is a new and unfamiliar approach to most transportation 

agencies. The lack of familiarity with laser scanning systems and spectral modeling will be a future 

barrier to its widespread deployment. However, the authors of this report believe that the 

technology, which is currently being employed on the Mars Rover to characterize Martian stone 

and soil, will be the future of geologic investigation here on earth. The speed of development of 

laser scanning technology in the transportation industry will be up to each State Agency. 

In December 2020, the Kansas Department of Transportation (KDOT) became the first 

State Agency in the nation to install a scanning system in its State-run materials laboratory. By 

installing such a system in its own laboratory, KDOT presently has the means to expand the 

potential of the technology by characterizing its own aggregate resources, and to uniquely address 

the issues that are most pressing to KDOT.  
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