Low Temperature Cracking Implementation Activities in Minnesota

Timothy R. Clyne
MnDOT

TPF-5(132) Close Out Meeting
September 13, 2012
Prepare sample during mix design
- Contractor provide extra TSR pucks
- Prepare specimens at 7% air voids

Perform 3 replicate tests at pavement temperature per LTPPBind
- -24 °C for Minnesota

Average $G_f > 400$ (450?) J/m²

Make adjustments if mix fails & retest
DCT Low Temperature Fracture Testing Pilot Project

- 2 year project (July 2012 - June 2014)
- $96,000
- Laboratory testing
- Contractor mix adjustments
- Equipment purchases
Identify Construction Projects

- 3-5 projects in 2012 or 2013
- New construction
 - Aggregate base or FDR/SFDR
- Coordinate with Bituminous Office, Contractor, Construction
- Ulland Brothers – St. Louis County CSAH 21
 - FDR + Overlay
- Commercial Asphalt/Stantec – BAB
- District 3 – TH 71 (2013)
Laboratory DCT Testing and Mix Design Adjustments

- Contractor provide samples at mix design
- UMD performing DCT tests
 - MnDOT may perform companion tests
- If mix meets spec, approved for paving
- If mix fails spec, contractor must make adjustments
Possible Mixture Adjustments

- **Binder grade**
 - Reduce low PG (-34 vs -28)
 - Different modifier or supplier

- **Aggregate source**
 - Granite/taconite instead of limestone
 - Reduce RAP/RAS content

- **Aggregate gradation**
 - Finer gradation
 - Increase binder content
Pavement Construction

- Construct pavement with approved mixture
 - Funding available for contractor to change materials
- Document conditions at plant and paver
- Take samples to test as-produced mixture
 - For information only
Prepare Final Report

- Summarize all work conducted during the project
 - Project selection
 - Laboratory testing
 - Mix adjustments
 - Field construction
 - Initial pavement performance
Purchasing Lab Equipment

- Test fixtures
- CMOD gauge
- Software modifications
- Wet core saw & driller
- Wet-band saw
- Temperature controller
- Core barrels (1” & 6”)
- 8” caliper
Evaluating ILLI-TC Model

- Compare ILLI-TC with DarwinME
- What inputs are needed?
- What is the output?
- Performing trial runs
TESTING ADDITIONAL MIXTURES

To answer questions about in-service pavements out in the districts
Project 1 – Materials

- TH9 (SPWEB340C)
 - Coarse Gradation
 - Virgin Binder: PG 58-34 (73% New AC, 20% RAP)
 - Total AC = 4.0%
 - AFT = 8.5
 - VMA = 13.2

- TH70 (SPWEB340C)
 - Fine Gradation
 - Virgin Binder: PG 58-34 (76% New AC, 20% RAP)
 - Total AC = 5.2%
 - AFT = 8.5
 - VMA = 15.9
Effect of Volumetric

- Same AFT but very different fracture energies
- As VMA increases fracture energy increases (also seen in previous studies)
- More AC = Better Fracture Energy
Project 2 – Materials

- TH371
 - RP6 (2005)
 - Wear: WEB440C, 12.5 mm, PG 58-34
 - Base: NWC430H, 19.0 mm, PG 70-28
 - Wear: WEB440F, 12.5 mm, PG 64-34
 - Base: NWC430B, 19.0 mm, PG 58-28

- Significant cracking was observed near RP 21.5 (more than other areas)
- RP6 showed minimal cracking
Results

Min. recommended threshold from LTC study (450 J/m²)

* The fracture energies aligns well with field cracking
Summary

- Implementation project is underway
- Support from Bituminous Office, Districts, Industry
- Tool to evaluate in-service pavements
- HMA Performance Testing project
- Eventually extend to other types of cracking
 - Fatigue, Top Down, Reflective
Thank You!

Tim Clyne
651-366-5473
tim.clyne@state.mn.us

www.mndot.gov/mnroad