Low Temperature Cracking Implementation Activities in Minnesota

Timothy R. Clyne MnDOT

TPF-5(132) Close Out Meeting September 13, 2012

Draft Mixture Specification

- o Prepare sample during mix design
 - Contractor provide extra TSR pucks
 - Prepare specimens at 7% air voids
- o Perform 3 replicate tests at pavement temperature per LTPPBind
 - -24 °C for Minnesota
- o Average $G_f > 400 (450?) J/m^2$
- o Make adjustments if mix fails & retest

DCT Low Temperature Fracture Testing Pilot Project

- o 2 year project (July 2012 June 2014)
- o \$96,000
- Laboratory testing
- o Contractor mix adjustments
- o Equipment purchases

Identify Construction Projects

- o 3-5 projects in 2012 or 2013
- New construction
 - Aggregate base or FDR/SFDR
- o Coordinate with Bituminous Office, Contractor, Construction
- o Ulland Brothers St. Louis County CSAH 21
 - FDR + Overlay
- Commercial Asphalt/Stantec BAB
- o District 3 TH 71 (2013)

Laboratory DCT Testing and Mix Design Adjustments

- o Contractor provide samples at mix design
- o UMD performing DCT tests
 - MnDOT may perform companion tests
- o If mix meets spec, approved for paving
- o If mix fails spec, contractor must make adjustments

Possible Mixture Adjustments

- o Binder grade
 - Reduce low PG (-34 vs -28)
 - Different modifier or supplier
- o Aggregate source
 - Granite/taconite instead of limestone
 - Reduce RAP/RAS content
- Aggregate gradation
 - Finer gradation
 - Increase binder content

Pavement Construction

- o Construct pavement with approved mixture
 - Funding available for contractor to change materials
- o Document conditions at plant and paver
- o Take samples to test as-produced mixture
 - For information only

• • Prepare Final Report

- Summarize all work conducted during the project
 - Project selection
 - Laboratory testing
 - Mix adjustments
 - Field construction
 - Initial pavement performance

Purchasing Lab Equipment

- o Test fixtures
- o CMOD gauge
- o Software modifications
- o Wet core saw & driller
- o Wet-band saw
- o Temperature controller
- o Core barrels (1" & 6")
- o 8" caliper

Evaluating ILLI-TC Model

- o Compare ILLI-TC with DarwinME
- o What inputs are needed?
- o What is the output?
- o Performing trial runs

TESTING ADDITIONAL MIXTURES

To answer questions about in-service pavements out in the districts

• • • Project 1 – Materials

o TH9 (SPWEB340C)

- Coarse Gradation
- Virgin Binder: PG 58-34 (73% New AC, 20% RAP)
- Total AC = 4.0%
- AFT = 8.5
- VMA = 13.2

o TH70 (SPWEB340C)

- Fine Gradation
- Virgin Binder: PG 58-34 (76% New AC, 20% RAP)
- Total AC = 5.2%
- AFT = 8.5
- VMA = 15.9

Effect of Volumetrics

- Same AFT but very different fracture energies
- As VMA increases fracture energy increases (also seen in previous studies)
- More AC = Better Fracture Energy

• • Project 2 – Materials

- o TH371
 - RP6 (2005)
 - Wear: WEB440C, 12.5 mm, PG 58-34
 - Base: NWC430H, 19.0 mm, PG 70-28
 - RP17 and RP21.5 (2004)
 - Wear: WEB440F, 12.5 mm, PG 64-34
 - Base: NWC430B, 19.0 mm, PG 58-28
- Significant cracking was observed near RP 21.5 (more than other areas)
- o RP6 showed minimal cracking

Results

Min. recommended threshold from LTC study (450 J/m²)

^{*} The fracture energies aligns well with field cracking

• • • Summary

- o Implementation project is underway
- Support from Bituminous Office, Districts, Industry
- Tool to evaluate in-service pavements
- o HMA Performance Testing project
- o Eventually extend to other types of cracking
 - Fatigue, Top Down, Reflective

• • • Thank You!

Tim Clyne 651-366-5473 tim.clyne@state.mn.us

