Guidelines for Designing Bridge Piers and Abutments for Vehicle Collisions

Texas Department of Transportation (TxDOT) Project #: 9-4973

Project Status Meeting August 13, 2008 TxDOT Riverside Office

Project Tasks Phase 1

- Task 1a Literature Review
- Task 1b Computer Simulations of Vehicle/Bridge Column and Abutment Collisions
- Task 1c Accident Survey & Analysis Study
- Task 1d Development of a Risk Analysis Methodology for Vehicle/Bridge Column and Abutment Collisions
- Task 1e Detailed Justification and Work Plan for Research to be Conducted under Phase 2.
- Task 1f Provide Facilities and a Host Meeting to Present Phase 1 Results to Project Sponsors.

Project Tasks Phase 2

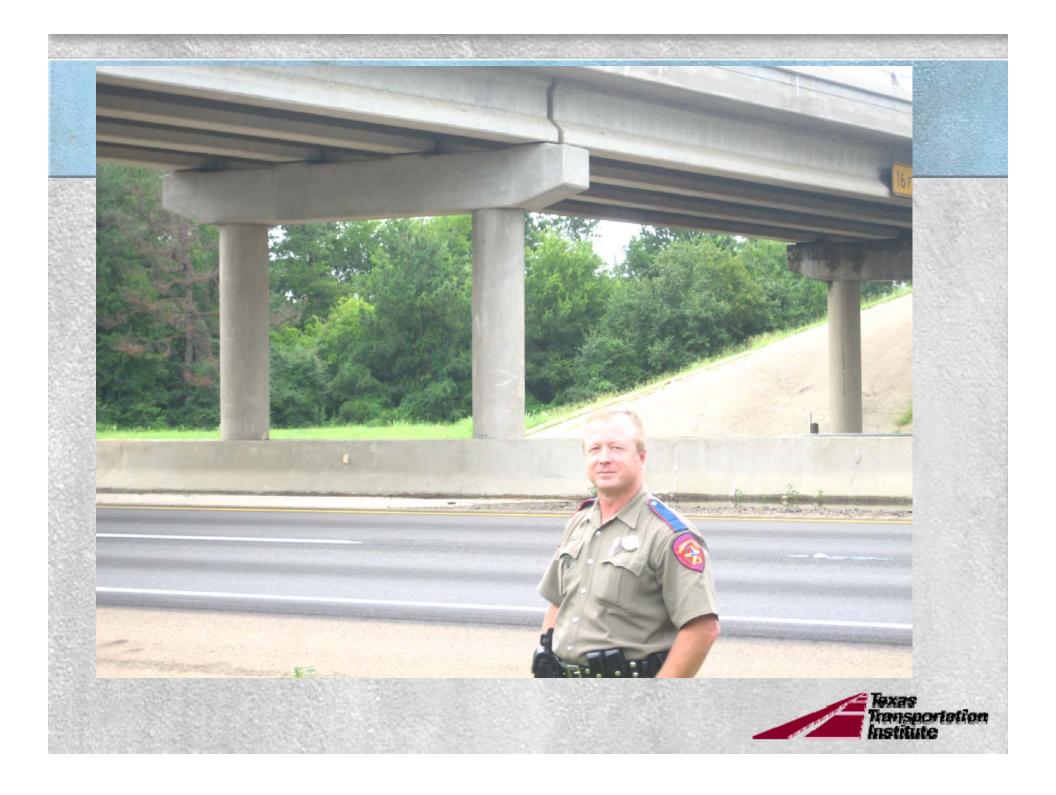
- Task 2a Crash Testing with a Single Unit Truck to Verify Loading From Phase 1 Literature Survey and Computer Simulations
- Task 2b Full-Scale Crash Testing of a 5-Axle Tractor Trailer Rig to Verify Loading from Liter. Survey & Computer Simulations

Task 1a - Literature Review

 A thorough Literature review of available information on large truck collisions with bridge piers has been completed.

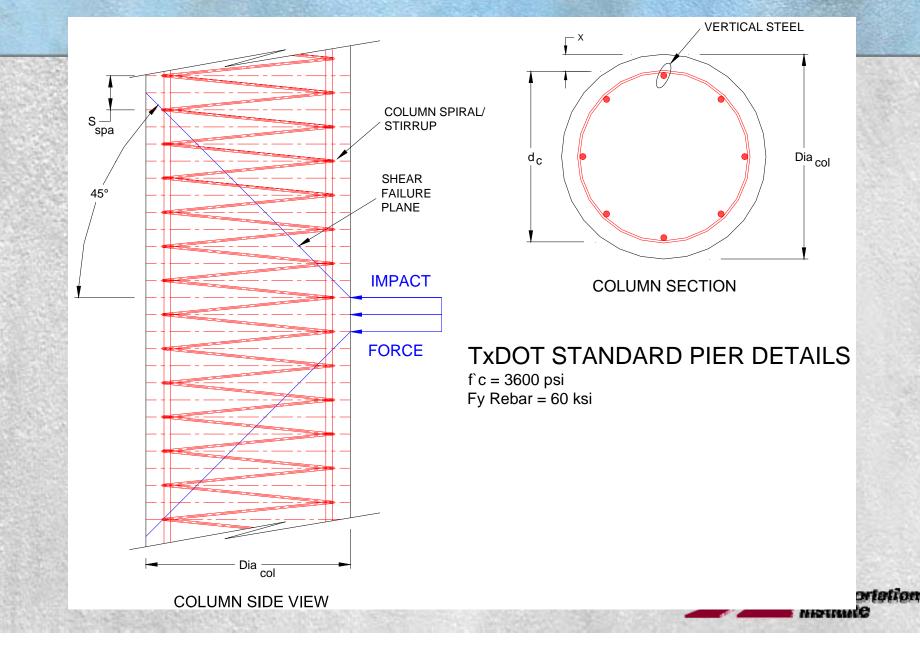
Task 1c - Accident Survey & Analysis Study

- Data from several highway accidents involving large trucks colliding with bridge piers has been collected. A brief review of data from two of the accidents is presented as follows.
- Task is 80% complete



Semi Tractor-Trailer Crash FM 2110 Bridge Over I-30, Texarkana, TX, August 8, 1994 80,000 lbs. @ 65 mph w/ 30-inch Pier

Semi Tractor-Trailer Crash FM 3041 Bridge Over I-45, Corsicana, TX, May 30, 2007 80,000 lbs., est. 60 mph w/ 30-inch Pier



Task 1c – Calculations to Quantify Pier Shear Capacities

- Standard TxDOT Pier Details Where Obtained and Investigated
- Analytical Pier Shear Capacities were performed with Respect to American Concrete Institute (ACI) Specifications 318-R-05 Chapter 11 "Shear And Torsion".

Circular Pier Shear Failure Mechanism & Details

Summary of Calculated Circular Concrete Pier Shear Capacities

Calculated Circular Concrete Pier Shear Capacities					
Diameter Pier (in.)	Stirrup Size	d _c Spiral Stirrup Diameter	V _c Concrete Shear Cap.	V _s Nom. Shear Stirrups	V _n = V _c + V _s Nom. Shear Pier
		(in.)	(kips)	(kips)	(kips)
24	#3	18	124.3	106	230.3
30	#3	24	186.6	132.5	319.1
36	#3	30	262.6	159	421.6
42	#5	36	352.4	515.4	867.8

Task 1b – Computer Simulations of Vehicle/Bridge Column and Abutment Collisions

- Simulation Analysis Update & Approach
- Task is 75% complete

Dump-Truck Matrix Study

Matrix I - Pier diameter study

- 50 mph
- Rigid Ballast
- 24", 36" & 48" Rigid Pier

Ballast Test Matrix

- 36" Rigid Pier
- 40 mph, 65 k-lbs., Rigid Ballast
- 50 mph, 65 k-lbs., Rigid Ballast
- 50 mph, 19 k-lbs., No Ballast

Matrix II

- Rigid Ballast
- 36" Rigid Pier
- 40 & 50 mph
- Matrix III
 - Deformable Ballast
 - 36" Rigid Pier
 - 40, 50 & 60 mph

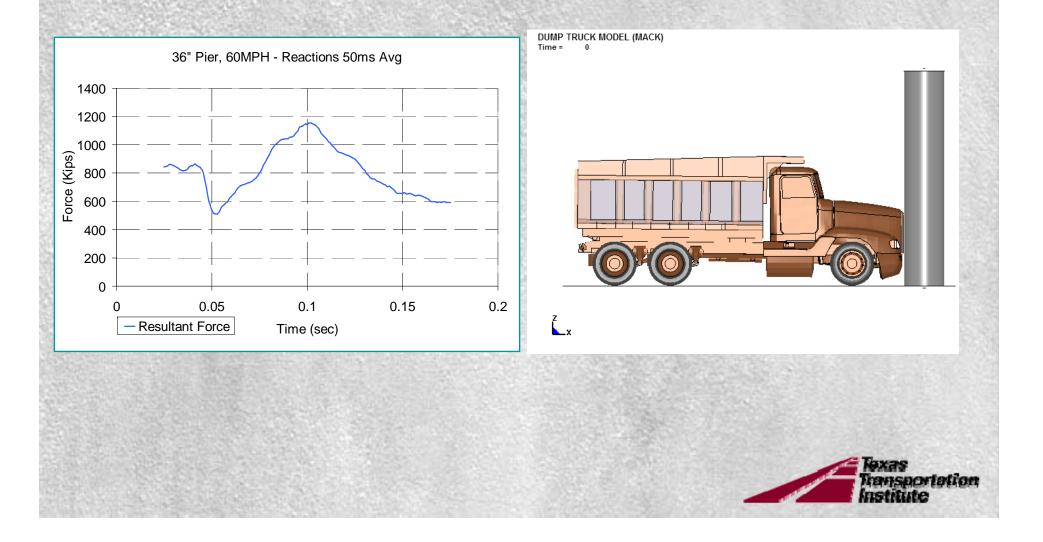
Tractor Trailer Matrix Study

Planned Ballast Test Matrix

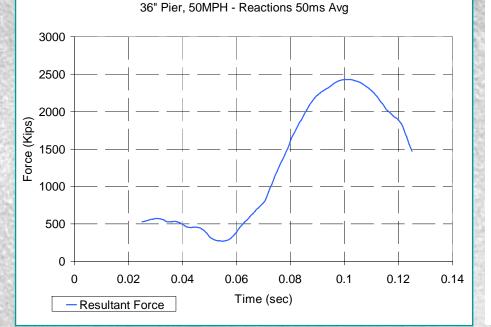
- 50 mph
- 36" Rigid Pier
- 80 K-Lbs.
- Rigid Ballast (spread across trailer area)
- Rigid Ballast (concentrated over axles)
- Deformable Ballast (spread across trailer area)
- Deformable Ballast (concentrated over axles)

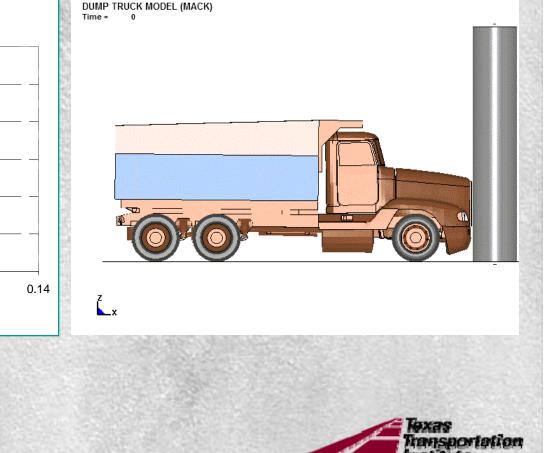
Planned Matrix I

- Rigid ballast
- 36" Rigid Pier
- 40, 50 & 60 mph


Planned Matrix II

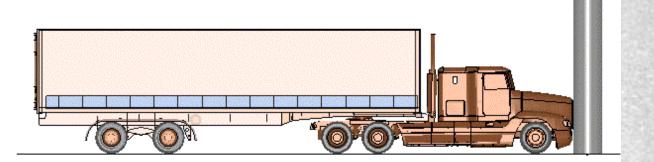
- Deformable Ballast
- 36" Rigid Pier
- 40, 50 & 60 mph


Dump-Truck with Deformable Ballast


60 mph impact into 36" diameter rigid pier

Dump-Truck with Rigid Ballast

50 mph impact into 36" diameter rigid pier



Tractor Trailer with Rigid Ballast

60 mph impact into 36" diameter rigid pier

TRACTOR MODEL (NCAC V01B) Time = 0

> z x

Texas Transportation Institute

Task 1d – Development of a Risk Analysis Methodology for Vehicle /Bridge Column and Abutment Collisions

- Texas accident data used
- Minnesota accident data to be used
- Task is about 50% complete

