Guidelines for Designing Bridge Piers and Abutments for Vehicle Collisions（9－497／3－1）

Crash Risk Analysis

Geedipally
Dominique Lord

April 14， 2009

Outline

－Data Collection Process
－Characteristics of the Data
－Crash Risk Analysis
－Example Applications
－Comparison between TX and MN
－Summary

Data Collection

「ご踪：

Crash Data：
Collected from Department of Public Safety（DPS）for the years 1998－2001． Contained information about crash location，crash type，crash time，vehicle type，causing factors，etc．
Network Data：
Collected using RHINO and Texas Reference Marker（TRM），databases managed by the Texas Department of Transportation（TxDOT）．
Only segments that are defined as interstates，state and US highway main lanes were considered．
Bridge Location Data
Collected from TxDOT Transportation Planning and Programming Division．

Data Collection

M/insiesotel:
Crash and Network Data:
Collected from Federal Highway Administration's (FHWA) Highway Safety Information System (HSIS) for the years 2002-2006.
Contained information about crash location, crash type, crash time, vehicle type, causing factors, etc
Only segments that are defined as interstates, state and US highway main lanes were considered.

- Bridge Location Data

Collected from Minnesota Department of Transportation (MnDOT).

\qquad

Data Characteristics

\qquad
Highway sections were separated into divided and undivided segments. Separate analysis was also carried out for horizontal curves and tangent sections in Texas.
\qquad
Undivided segments:

Variable	Texas	Min esola
Years	$1998-2001$	$2002-2006$
Number of sites	350	54
Average segment length (mile)	0.75	0.49
Average bridge density (bridges/mile)	3.91	12.1
Average Shoulder Width (ft)	5.81	6.14
Average lane width (ft)	12.23	12.37
Average Truck AADT	928	673
Total ROR crashes	640	3
Total HBP crashes	7	2

\qquad
\qquad
\qquad
\qquad
\qquad

Data Characteristics

Divided segments:

Variable	Texas	Minnesoial
Years	$1998-2001$	$2002-2006$
Number of sites	2,486	552
Average segment length (mile)	1.15	1.006
Average bridge density (bridges/mile)	4.07	12.33
Average right shoulder width (it)	9.54	9.05
Average lane width (ft)	12.01	12.23
Average Truck AADT	6,696	3346
Total ROR crashes	32,326	421
Total HBP crashes	159	28

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crash Probability
Probability of a heavy vehicle to runoff the road:
$P_{T-R O R}=$ the number of truck ROR crashes / the number of opportunities
Where,
Number of opportunities $=$ TAADT* $365^{*} Y$
Probability of a heavy vehicle to hit a bridge pier after running off the road:
$P_{\text {HBPT_ROR }}=$ the number of trucks hitting a bridge pier / the number of Trucks ROR crashes
Probability of a heavy vehicle to hit a bridge
$P_{\text {HBR }}=P_{\text {HBPT_ROR }}{ }^{*} \quad P_{T_{-R O R}}$

$A F=T A A D T * P_{H B P} * 365$
0
Crash Probability Analysis (Texas Data)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Crash Probabilility \qquad

Crash Probability Analysis on Tangent Sections and Horizontal Curves (Texas Data)

	Undivided		Divided	
Variables	Tangents	Curves	Tangents	Curves
Number of Sites	156	25	912	540
Total Length (miles)	64.2	6.9	707.8	161.4
ROR crashes (4yrs)	203	24	8664	3468
Hit bridge pier crashes (4yrs)	2	0	46	49
Opportunities	$2.094 * 10^{8}$	$3.259 * 10^{7}$	$8.936 * 10^{9}$	$5.498 * 10^{9}$
$\mathrm{P}_{\text {T ROR }}$	$2.200{ }^{2} \times 10^{-6}$	3, $150 \cdot 10^{-4}$.89)/ ${ }^{\left(10^{-6}\right.}$	$2.515 * 10^{-6}$
$\mathrm{P}_{\text {HBPT ROR }}$	0.00985	--	0.00531	0.0141
$\mathrm{P}_{\mathrm{HBP}}$	$2.176^{* 10.3}$	--	.007/41024	$500^{*} \times 10^{-3}$

Crash Probability \qquad

Crash Probability Analysis (Minnesota Data) \qquad

Variables	Undivided	Divided
Number of Sites	54	552
Total Length (miles)	26.8	555.3
ROR Crashes (5-year)	3	421
Hit Bridge Pier Crashes (5-year)	2	28
Opportunities	$6.637 * 10^{7}$	$2.697 * 10^{9}$
$\mathrm{P}_{\text {Trior }}$	0.3-10. 0^{-3}	29. 10.7
P ${ }_{\text {Prapt ror }}$	0.67	0.067
$\mathrm{P}_{\mathrm{HBR}}$	1355*103	$2.15 * 10^{3}$

\qquad
\qquad
\qquad
\qquad
\qquad

Regression Analysis

Jegarive Binornial clistributions
The number of crashes ' Y ' for a particular it site when conditional on its mean is Poisson distributed and independent over all sites and time periods
$Y_{i t} \mid \lambda_{i t} \sim P o\left(\lambda_{i t}\right)$
The mean of the crashes is structured as
$\lambda_{i t}=\mu_{i t} \exp \left(\varepsilon_{i t}\right)$
Where μ_{t} is the function of covariates $\mathrm{f}(\mathrm{X}, \beta$)
$\beta=\beta_{0} \ldots . . \beta_{k}$ are the vector of regression coefficients, and
$X \mathrm{~s}$ are the vector of traffic flow and site specific covariates
$\exp \left(\varepsilon_{i t}\right) \mid \alpha \sim$ gamma $(1 / \alpha, 1 / \alpha)$
α ~ gamma (a, b)

\qquad
\qquad
\qquad
\qquad
\qquad

Regression Analysis

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practical Application- 1

A new bridge is planned to be constructed on $1-10$. The TAADT on this highway is 6000 vehicles per day. The designer is interested in finding the \qquad trequency of the bridge to be hit by a heavy vehicle.

Using the values found in Table 5.17, the probability for a truck to hit bridge pier (P_{m+1}) on a divided highway is estimated to be $8.83 * 10^{-9}$.

The annual frequency (AF) the bridge pier is hit can be calculated as:
$A F=T A A D T \times P_{\text {HBP }} \times 365$
$A F=6000 \times 8.83 \times 10^{-9} \times 365=0.0161$ \qquad
\qquad

Practical Application- 2 \qquad
Due to a train derailment, a bridge spanning on the top of that railway has been damaged. The heavy trucks are diverted to an adjacent highway. This alternative route is 10 mile long undivided highway with an average of 2 \qquad bridges/mile. The existing heavy truck traffic is 7000 vehicles/day and because of re-routing, another 5000 heavy trucks will be added to it. One bridge pier has been hit over the last five years on this route. The designer is interested in finding the frequency of the hit bridge pier crash by a heavy vehicle.
Step 1: Calculate the crash risk on the alternative route with existing traffic
Using equation (5) and table 5.23 , the expected hit bridge crashes is given
\qquad
as:

$$
\mu_{i}=\frac{F_{i} \times L_{i} \times 365}{1,000,000} \beta_{0} e^{\sum_{i=1}^{n} x_{i} \beta_{i}}
$$

$$
\hat{\mu}=\frac{19000 \times 10 \times 365}{1,000,000} e^{-4.437} \times e^{0.2100^{2} 2}=1.25
$$

The predicted frequency of a heavy truck to hit a bridge pier is given as $1.25^{*} 0.14=0.175$ crashes/year
\qquad
\qquad

Practical Application- 2

Step 2: Calculate the Empirical Bayes (EB) estimate with the existing traffic
Using equation (7), the EB estimate is given as
$\hat{\hat{\mu}}_{i t}=\left(1-\omega_{i t}\right) y_{i t}+\omega_{i t} \hat{\mu}_{i t}$
The weight factor is given as follows:
$\omega_{n}=1 /\left(1+\alpha \times \hat{\mu}_{n}\right)$
$\omega_{i t}=1 /(1+(0.175 \times 1 / 0.122))=0.139$
Over the last five years, the predicted crashes would be $0.175 * 5=0.875$
The EB estimate for hit bridge crashes over the last five years is:
$\hat{\hat{\mu}}_{i t}=(1-0.139) * 1+0.139 \times 0.875=0.983$
Thus the EB estimate is $0.983 / 5=0.197$ crashes/year.

Practical Application- 2

Step 3: Calculate the EB estimate on the alternative route with the new and existing traffic

The EB estimate for heavy truck hit bridge pier crashes in the next year is given as:

$$
\hat{\hat{\mu}}_{i t}=\frac{12000}{7000} \times 0.197=0.34
$$

Thus, we can expect a hit bridge pier crash by heavy truck in the next three years on this route.

Comparison between TX and MN

Variables	Texas	Minnesoia
Number of Sites	2486	552
Total Length (miles)	2862.9	555.3
ROR Crashes (4-year)	5323	421
Hit Bridge Pier Crashes (4-year)	30	28
Opportunities	$8.33 * 10^{9}$	2.697*109
$\mathrm{P}_{\text {T R ROR }}$	5.24*10.7	$3.29 * 10^{-7}$
$\mathrm{P}_{\text {Hibrickor }}$	0.0056	0.067
$\mathrm{P}_{\text {HBP }}$ I	$2.93 * 10^{-9}$	$2.19 * 10^{-8}$

Comparison between TX and MN \qquad

\qquad
\qquad
\qquad
\qquad

Relationship between Truck ROR Crashes and TAADT on
Divided Roads

Comparison between TX and MN \qquad

Relationship between Truck Hitting Bridge Pier Crashes and TAADT on Divided Roads with 3 Bridges per Mile -

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

