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EXECUTIVE SUMMARY 

Accounting for seismic forces and thermal expansion in bridge design requires an accurate 

passive force-deflection relationship for the abutment wall. Current design codes make no allowance for 

skew effects on passive force; however, quarter scale lab tests indicate that there is a significant reduction 

in peak passive force as skew angle increases for plane-strain cases. To further explore this issue larger 

scale field tests were conducted with skew angles of 0° and 45° with longitudinal, reinforced-concrete 

wingwalls. The abutment backwall was 11-ft (3.35-m) wide by 5.5-ft (1.68-m) high and backfill material 

consisted of dense compacted sand. The peak passive force for the 45° skew test was found to be 50% of 

the peak passive force for the 0° skew case. Longitudinal displacement of the backwall at the peak 

passive force was found to be between 4% and 5% of the backwall height for the 0° and 45° skew test 

which is consistent with previously reported values for large-scale passive force-deflection tests.  Passive 

pressure across the backwall was typically lower near the center of the wall and higher at the edges with 

the highest pressures at the acute corner.  Shear force on the backwall increased as skew angle increased 

despite the reduction in longitudinal force with skew angle.  Transverse pile cap displacements also 

increased with skew angle and were sufficient to mobilize the frictional resistance. Heave geometries for 

the 0° and 45° tests were 2% to 4% of the fill height.
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INTRODUCTION 

 Several large-scale field tests have investigated passive force-deflection behavior with densely 

compacted granular backfills (Cole and Rollins 2006; Duncan and Mokwa 2001; Lemnitzer et al. 2009; 

Rollins and Sparks 2002). Results of numerous field studies indicate that peak passive force is adequately 

predicted using the log-spiral method, typically achieved at displacements approximately 3% to 5% of the 

backwall height (Cole and Rollins 2006; Lemnitzer et al. 2009). Methods of approximating passive force-

deflection curves with a hyperbola have been developed by Duncan and Mokwa (2001) and Shamsabadi 

et al. (2006, 2007). However, for simplicity in design, most bridge design specifications recommend a 

bilinear relationship (AASHTO 2011; Caltrans 2010). 

Until recently, no large-scale experiments had been conducted to determine the passive force-

deflection relationships for skewed bridge abutments. Furthermore, current bridge design practices 

assume the peak passive force is the same for skewed bridges as for non-skewed bridges (AASHTO 

2011). However, field evidence clearly indicates poorer performance of skewed abutments during seismic 

events (Apirakyorapinit et al. 2012; Elnashai et al. 2010; Shamsabadi et al. 2006; Unjohn 2012) and 

distress to skewed abutments due to thermal expansion (Steinberg and Sargand 2010). Laboratory tests 

performed by Rollins and Jessee (2012) and numerical analyses performed by Shamsabadi et al. (2006) 

both found that there is a significant reduction in passive force as skew angle increases. Using data 

obtained from these studies, Rollins and Jessee (2012) proposed the correction factor, Rskew, given by 

Equation (1) which defines the ratio between the peak passive force for a skewed abutment (PP-skew) and 

the peak passive force for a non-skewed abutment (PP-no skew) as a function of skew angle, θ.  

 
R 8.0 ∗ 10 θ 0.018θ 1.0 (1) 

Because Equation (1) is based only on small-scale tests and computer models with plane-strain 

conditions, the need for additional large-scale testing with more realistic boundary conditions was 

apparent. For this study, two large-scale field tests were performed with skew angles of 0° and 45° using 

an existing pile cap and reinforced concrete wingwalls connected to the pile cap with concrete wedge 
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	 P P cosθ 2

	 P P sinθ 3

	 P cA P tanδ 4

	 cA P tanδ
F

P sinθ 5

	 cA P tanδ L cosθ
F

P L sinθ 6

where  

 θ skew angle of backwall  

 c soil cohesion  

 A backwall area  

 δ angle	of	friction between backfill soil and abutment wall  

 F factor of safety  

 L length of bridge  

These equations are only strictly valid if the bridge remains stable; therefore, if the bridge rotates, the 

distribution of forces on the abutment backwall will likely change, rendering these equations less 

accurate.  Based on Equation 6 , Burke Jr. (1994) noted that if cohesion is ignored the potential for 

bridge rotation is independent of passive force and bridge length so that at a typical design interface 

friction angle of 22°, the factor of safety decreases to below 1.5 if bridge skew exceeds 15°.  

Test configuration for this study closely resembled the left end of the bridge in Figure 1 with 

longitudinal reinforced concrete wingwalls. Two previous studies investigated force-deflection behavior 

of abutments with reinforced concrete wingwalls. Romstad et al. (1996) performed cyclic load-

displacement tests on a non-skewed abutment with integral wingwalls with Yolo Loam (clayey silt) and 

well-graded silty sand as the embankment and structural backfill material, respectively. They reported 

passive force-deflection and stiffness-displacement results with the peak passive force  mobilizing 
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at displacements approximately 8% of the backwall height. A similar study was done by Bozorgzadeh et 

al. (2008), with silty sand as both the embankment and backfill material, where was achieved at 

approximately 2% to 3% of the backwall height; however, in this case the wall was not constrained 

against upward movement by piles . To the author’s knowledge, no results were reported in either study 

regarding wingwall response. 

TEST CONFIGURATION 

Test Geometry  

 The test setup for the previous small-scale laboratory tests involved a 2 ft (0.61 m) high 

by 4 ft (1.22 m) wide backwall with a 2D or plane-strain backfill geometry, as shown in Figure 2 (Rollins 

and Jessee 2012). In contrast, the field tests used an existing 11 ft (3.35 m) wide by 5.5 ft (1.68 m) high 

by 15 ft (4.57 m) long pile cap to simulate an abutment backwall as shown in Figure 3. Reinforced 

concrete wingwalls extend 6 ft into the backfill on both sides of the pile cap. Instead of a 2D backfill 

geometry, the backfill was placed in a test pit that extended a little over 5 ft (1.52 m) out from the sides of 

the pile cap to the edge of the test pit to allow for the development of a 3D failure geometry. The backfill 

extended 24 ft (7.32 m) longitudinally from the face of the backwall and approximately 1 ft (0.30 m) 

below the bottom of the backwall within 10 ft of backwall face to contain the potential failure surface. 

Outside the total abutment width (including wingwalls) and beyond 24 ft outward from the backwall, the 

backfill tapered downward at a 2H:1V slope to simulate typical field conditions Though the native soil 

was significantly stiffer than the backfill materials, the backfill boundaries were considered to be far 

enough away to not affect the development of a shear surface. Beyond 10 ft (3.05 m), the base of the 

backfill tapered up to be approximately even with the base of the cap to reduce the required backfill 

volume. 

 Load was applied in the longitudinal direction with two 600-kip (2,670 kN) hydraulic actuators 

which reacted against a sheet pile wall and two 4-ft (1.22 m) diameter drilled shafts that were coupled 

together by two deep beams.  



 

Figure 2. Schematicc drawings off lab test layoout (Rollins and Jessee 2012) (NOTE

 

E 1 m = 3.281

5 

 ft). 
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Figure 7 Gradation for backfill sand relative to concrete sand gradation. 

The target on-site compaction level was 95% of the modified Proctor maximum or higher. Backfill sand 

was placed in lifts approximately 6-in (15.24-cm) thick and compacted with a smooth-drum vibratory 

roller and a walk-behind vibratory plate compactor to an average density greater than approximately 95% 

of the modified Proctor maximum. A nuclear density gauge was used to obtain relative compaction and 

water content data during compaction. Though not shown, the variation of relative compaction and 

moisture content with depth was not significant. Average relative density was estimated using the 

empirical relationship between relative density (Dr) and relative compaction (R) for granular materials 

developed by Lee and Singh (1971) as shown in Equation (7) where Dr and R are measured in percent. 

 R 80 0.2D  (7) 

A summary of the soil density and water content measurements for the three tests is shown in Table 1. 

The properties of the two backfills were generally very consistent. Average relative compaction, relative 

density, and water content for the two tests were 97.7%, 88.3%, 7.5%, respectively. For comparison 

purposes the average relative compaction, relative density, and water content for the laboratory tests were 

97.9%, 90%, and 8.0%, respectively (Rollins and Jessee 2012). 
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Table 1. Summary of Compaction and Water Content Data for Each Test 

Backfill Soil Properties 0º Skew Test 45º Skew Test Average 

Minimum Dry Unit Weight [pcf] 105.4 107.9 106.7 

Maximum Dry Unit Weight [pcf] 109.9 112.9 111.4 

Average Dry Unit Weight [pcf] 108.2 109.6 108.9 

Relative Compaction 97.0% 98.3% 97.7% 

Relative Density 85.0% 91.5% 88.3% 

Moisture Content 7.2% 7.8% 7.5% 
 

 

Figure 8. Dry unit weights for 0° skew. 

 

Figure 9. Moisture contents for 0° skew. 
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Figure 10. Dry unit weights for 45° skew. 

 

Figure 11. Moisture contents for 45° skew. 
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interface friction angle (δ) between similar sand and concrete was about 75% of the soil friction angle. 

For comparison purposes, the drained friction angle of the sand for the laboratory skew tests was 46° with 

a cohesion of 70 lbs/ft2 (3.35 kPa) (Rollins and Jessee 2012). 

General Test Procedures 

 Prior to testing with the backfill in place, a lateral load test was performed to determine the 

“baseline” resistance of the pile cap alone, and the pile cap with attached wedge. Because the pile cap had 

been previously employed for a number of tests, the baseline resistance has become relatively linear. 

Following the baseline test, backfill was compacted adjacent to the backwall, the grid and soil columns 

were installed, and appropriate initial measurements, including relative elevations and locations of the 

grid points, were recorded. The backfill material was completely excavated and re-compacted for each 

individual test.  

 Following initial measurements, a lateral load test was performed for both 0° and 45° skewed 

abutments where the pile cap and attached wingwalls were pushed longitudinally into the backfill in 0.25-

in (6.35-mm) increments at a velocity of 0.05 in/min (6.35 mm/min) to a final displacement of 

approximately 3.0 in (7.62 cm) to 3.75 in (9.53 cm) using the two hydraulic actuators. 

Plots of the total load and corresponding baseline curve for the non-skewed and 45° skewed test 

are shown in Figure 12 and Figure 13. The additional load of the ‘total force’ curve represents the 

resistance of the abutment backwall in the longitudinal direction, which is comprised of both the passive 

and shear resistance of the backfill against the backwall. Longitudinal resistance of the abutment backwall 

alone is found by subtracting the baseline curve from the total force curve. 
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Figure 12. Total force and baseline resistance for 0° skew test. 
 

 

Figure 13. Total force and baseline resistance for 45° skew test. 
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TEST RESULTS 

Passive Force-Deflection 

Figure 14 shows the passive force versus longitudinal deflection curves for the 0° and 45° skew 

field tests. Passive force ( ) was calculated using Equation 2 , P P cosθ, where the longitudinal 

load ( ) was the actuator load corrected for the baseline curve.  

 

Figure 14. Passive force-deflection curves for 0° and 45° skewed abutments with reinforced 
concrete wingwalls. 
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for the 45° skewed abutment (≈165 kips) is approximately 50% of the peak passive force for the non-
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Figure 15. Reduction factor, Rskew (passive force for a given skew angle normalized to non-skewed 
passive force) plotted versus skew angle based on lab tests (Rollins and Jessee 2012), numerical 

analyses (Shamsabadi et al. 2006) and results from field tests in this study. 
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Normal passive pressure from backfill on both wingwalls was measured for both tests and the increased 

frictional resistance on the east wingwall for the 45° test was computed using Equation (8) 

 ∗  , (8) 

where  

  

0.75 ,  

	 	  

 

(9) 

(10) 

(11) 

(12) 

Subtracting the increased frictional resistance from the 45° test lowers the resistance to an Rskew value 

closer to the proposed reduction curve, represented in Figure 15 by the downward arrow and additional 

point for R.C. Wingwall Tests (2013). 

Pile Cap Displacement vs. Depth 

Figure 16 and Figure 17 provide longitudinal deflection versus depth profiles obtained from both 

an inclinometer and a shape accelerometer array (SAA) for the 0º and 45° skew tests. Both profiles 

represent pile cap behavior for the final longitudinal displacement of the test. The depths are referenced to 

the top of the cap. The average deflection measured by the string pots at two elevations on the pile cap are 

also shown for comparison purposes. The graphs demonstrate that the measurements for the three systems 

were reasonably accurate and aligned with each other. The percent difference between the inclinometer 

and shape array profiles from the top of the cap to a depth of 15 ft (4.6 m) ranges between 0.3 and 7.0% 

with an average of 2.5% for the 0° skew test and 0.2% and 4.6% with an average of 1.9% for the 45° 

skew. The displacements below a depth of 15 ft (4.6 m) are very small and the error values in this zone 

are less than 0.02 inch and not particularly meaningful. Similar good agreement was obtained between the 

shape array and inclinometer for the other tests. 
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Figure 16. North 5.5-ft backfill 0° skew final longitudinal deflection; comparing inclinometer, shape 
array, and string potentiometers. 

 

 

Figure 17. North 5.5-ft backfill 45° skew final longitudinal deflection; comparing inclinometer, 
shape array, and string potentiometers. 

 

-13 0 13 25 38 51 64 76 89 102

0

2

4

6

8

10

12

0

10

20

30

40

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Longitudinal Deflection [mm]

D
ep

th
 B

el
ow

 T
op

 o
f 

C
ap

 [
m

]

D
ep

th
 B

el
ow

 T
op

 o
f 

C
ap

 [
ft

]
Longitudinal Deflection [in]

North SAA

Inclinometer

String Pots

-13 0 13 25 38 51 64 76 89 102

0

2

4

6

8

10

12

0

10

20

30

40

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Longitudinal Deflection [mm]

D
ep

th
 B

el
ow

 T
op

 o
f 

C
ap

 [
m

]

D
ep

th
 B

el
ow

 T
op

 o
f 

C
ap

 [
ft

]

Longitudinal Deflection [in]

North SAA

Inclinometer

String Pots



19 
 

The measurements indicate a relatively linear deflection profile within the pile cap and 

small cap rotations. Below the base of the cap, the piles deflect in a non-linear fashion with the 

deflections reaching a point of counterflexture at depth of approximately 21 ft (6.3 m) and a 

point of fixity at about 31 ft (9.45 m). Agreement between the north and south inclinometers was 

generally very good.  

Transverse deflection versus depth profiles for the pile cap, recorded by shape array and 

inclinometer, are also plotted in Figure 18 and Figure 19. Plotted on a smaller scale, the percent 

error seems larger than the longitudinal error although the magnitude difference is small. As 

observed for the deflections below 20 ft (6 m) in the longitudinal test, the percent difference is 

also exaggerated due to the smaller scale. The percent difference is within the error thresholds of 

each instrument ( 1.5 mm/30 m for shape array, and 1.24 mm/30m for inclinometer). Once 

again, the shape of the deflection profile indicates essentially linear deflection in the pile cap and 

very small rotations. The deflection in the piles is non-linear and decreases to zero at a deflection 

of about 20 ft (6 m). 

Although the inclinometer readings were only taken at the maximum deflection for each 

load test, shape array profiles in the longitudinal and transverse directions were obtained at each 

deflection increment for each test. For example, Figure 20 and Figure 21 show profiles of 

longitudinal deflection vs. depth for each deflection increment for the 0º and 45º skew tests. 

Similar curves were obtained in the transverse direction. As the deflection level increases the 

deflection of the pile cap remains linear but the rotation progressively increases while the depth 

to the point of fixity increases. At smaller deflection levels there are some variations associated 

with the small measurement errors; however at larger deflections, the data was accurate and 

useful in visualizing the pile movement. 
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Figure 18. North 5.5-ft backfill 0° skew final transverse deflections; comparing inclinometer and 
shape array. 

 

 

Figure 19. North 5.5-ft backfill 45° skew final transverse deflections; comparing inclinometer and 
shape array. 
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Figure 20. North longitudinal deflection vs. depth curves from shape array, inclinometer, and string 
potentiometer data at various deflection increments for 0° skew reinforced concrete wingwall test. 

 

 

Figure 21. North longitudinal deflection vs. depth curves from shape array, inclinometer, and string 
potentiometer data at various deflection increments for 45° skew reinforced concrete wingwall test. 
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As noted previously, the inclinometer and shape arrays measured transverse deflections 

for the north and south sides of the pile cap with depth. The measured transverse deflections at 

the top of pile cap on both the north and south sides of the cap after the last deflection increment 

for each test are plotted in Figure 22 from a plan view perspective. By connecting these points on 

the north and south sides, the rotation of the cap can be visualized. Although deflections of both 

actuators were kept relatively constant throughout the test, rotation and transverse deflection 

were still affected by the skew angle in the 45° skew test. As seen in Figure 22, for both the 0° 

and 45° skews the pile cap ultimately shifted to the left (the direction of the skew) by 

approximately 0.09 and 0.34 inch, respectively and rotated counterclockwise approximately 

0.01° and 0.04°, respectively. The shape arrays match the inclinometers almost exactly in Figure 

22 because transverse deflection was the parameter used to calibrate SAA orientation.  

 

 

Figure 22. Transverse pile cap deflection and rotation determined between north and south shape 
array and inclinometer data. 
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Pressure Distribution 

Figure 23 shows the lateral pressure readings along the abutment backwall from the pressure 

plates. The pressure plates show a pressure pattern similar to that observed in previous large scale tests 

conducted in this study.  The pressure is generally lowest near the center of the wall and pressure 

increases at the outside edges of the wall.  Measurements indicate that pressure was slightly higher at the 

acute end of the abutment relative to the obtuse side.  Beyond a deflection of 2.5 inches the pressure 

remain relatively consistent across the width of the cap.  Any additional load provided by the soil must be 

occurring elsewhere, possibly along the front edge of the wingwalls, at a different depth along the 

backwall, or by mobilizing frictional resistance along the longitudinal face of the wingwalls. 

 

Figure 23. Pressure Distribution vs. Displacement for 45° skew test. 

Figure 24 shows a comparison of the passive force derived from the pressure plates (at a depth of 

44.5 inches below the top of the backwall) and the passive force measured by the actuators.  The pressure 

plate readings assume no cohesion and thus presume a triangular pressure distribution vertically along the 

wall.  To obtain a passive force from the pressure plate data, the initial readings were corrected for 
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multiplied by their respective tributary areas and summed.  Although the shape of the passive force-

deflection curve follows the trend obtained from the actuator, the computed passive force is 20% to 30% 

higher measured by the actuators. Nevertheless, these results suggest that the patterns of pressure 

measured by the pressure plates are reasonable. 

 

Figure 24. Comparison of force measured by actuators and Geokon® pressure cells for 45° skewed 
abutment. 

Backfill Response 

The direction and magnitude of horizontal backfill displacement is illustrated in Figure 25 for 
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skewed test, the average direction of backfill displacement was 101°, indicating more westward 

movement of the backfill when compared to the non-skewed backfill displacement. The westward 

movement of the backfill for the 45° skewed test is in good agreement with the larger westward 

transverse deflection of the entire abutment. Displacement vectors from the non-skewed test suggest that 
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Figure 27. East and west shear planes and ground surface heave geometries for 0° wingwall skew 
test; inset shows plan view with approximate locations of red soil columns. 

 

Figure 28. Shear plane geometry and ground surface heave for 45° wingwall skew test (estimated 
failure line based on recorded heave measurements).  
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Figure 27 and Figure 28 show the location of the failure planes behind the non-skewed and 45° 

skewed abutments.  The failure surfaces show a log spiral portion followed by a linear Rankine failure 

wedge. Based on heave patterns, the failure surface for the 45° test would have likely daylighted around 

14ft longitudinally from the face of the wedge; however, no clear failure crack was observed.  In the  0° 

skew test, the failure surface daylighted at about 15ft longitudinally from the face of the wedge. Results 

from RC wingwall tests are consistent with previous large scale tests, which indicate that passive failure 

surfaces tend to daylight at heave values between 0.5 and 0.75 inches.    

The average angle of inclination of the linear portion of the failure surfaces for the 0° skew test 

was 25°. Assuming the relationship between friction angle and the angle of inclination (α) of the failure 

surface shown in Equation (13), the approximate friction angle for the 0° skew tests would be 40°. This 

value is reasonably consistent with the friction angle determined by the direct shear test. 

 α 45 ϕ /2 (13) 

The 45° test showed an angle of inclination of roughly 30°. This leads to a friction angle of roughly 34°.  

Detailed profile views of backfill heave measurements for both tests are shown in Figure 29 and 

Figure 30.  The heaved zone for the 0º skew test is clearly associated with the failure mass and decreases 

to about 0 when the failure surface daylights.  Based on the heave pattern the failure surface in the 45º 

skew would be expected to daylight at about 18 ft.  In both cases, the maximum heave does not occur at 

the wall face, but develops some distance back from the wall face. 
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Figure 29. East and West Ground surface heave geometries for 0° wingwall skew test; inset shows 
plan view with approximate locations of red soil columns. 

 

 

Figure 30. Ground surface heave for 45° wingwall skew test (estimated failure line based on 
recorded heave measurements). 
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for both tests are shown in Figure 31. Strain gauges instrumented 6 ft from the tapered end are roughly in 

line with the pile cap face. Based on the strain gauge readings, relatively small moments developed in the 

wingwall reinforcement on the non-skewed abutment, although moments were generally larger near the 

pile cap. A noticeable increase in moment was developed on the east wingwall reinforcement in line with 

the pile cap on the 45° skewed abutment, which is in good agreement with backfill displacement results. 

In general, maximum moments occurred 20 in below the top of the wingwall, which is about the midpoint 

of the 3-ft tapered end. The depth of the maximum moment appears to be caused by the upward taper of 

the wingwall. 

 

 

Figure 31. Moment distributions in wingwalls at test completion: (A) 0° skew. (B) 45° skew. 
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University of California, San Diego who performed lateral load tests on a non-skewed test abutment with 

reinforced concrete wingwalls in a silty sand backfill. Bozorgzadeh et al. (2008) plotted soil pressure 

versus depth at the west side and center of the test abutment (see Figure 34). Although soil pressure was 

measured on the abutment wall (not on wingwalls), the pressure distribution shape closely resembles 

those for the wingwalls in this study. 

 

 

Figure 33. Soil pressure distributions on wingwalls at test completion: (A) 0° skew. (B) 45° skew. 
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 Lateral earth pressure coefficients ( ) at the soil-wingwall interface were calculated using 

Equation (14) which divides the effective horizontal soil pressure by the initial vertical effective stress.  

 
 (14) 

Plots of the lateral earth pressure coefficients with depth are shown in Figure 35 for the non-skewed and 

45° skewed abutments. The majority of  values at the soil-wingwall interface for the non-skewed 

abutment are less than 1, closer to at-rest conditions. On the 45° skewed abutment, however, the east 

wingwall is clearly experiencing higher lateral earth pressures with  values as high as 8.6 near the pile 

cap at a 20-in depth. The lateral pressures on the west wingwall are similar to the non-skewed case.  

 

Figure 35. Lateral Earth pressure coefficient with depth along wingwalls for (A) 0° skew test and 
(B) 45° skew test (E = East; W = West). 
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CONCLUSIONS 

Based on results from large-scale lateral load tests on abutments with longitudinal reinforced concrete 

wingwalls and subsequent computer analyses, the following conclusions can be draw:.  

1. Large-scale field test results tests largely confirm previous results obtained from numerical 

models prepared by Shamsabadi et al. (2006) and small-scale lab tests by Jessee (2012) showing a 

significant reduction in peak passive force as skew angle increases (50% reduction for a 45° 

skew). 

2. A reduction in peak passive force for abutments with longitudinal reinforced concrete (RC) 

wingwalls can be reasonably estimated with the reduction curve proposed by Rollins and Jessee 

(2012). A 50% reduction was measured compared to the recommended 65% reduction for 45° 

skew. 

3. Observations of the failure plane and heave patterns suggest that a log-spiral failure geometry 

developed in the backfill.  However, the 3D effects from shearing beyond the edges of the cap 

were less pronounced than for the unconfined or transverse wingwalls.  Presumably, the parallel 

RC wingwalls inhibited the formation of these 3D shear surfaces to some extent.   

4. The maximum moment acting on RC wingwalls was measured at the strain gauge located 20 in 

(50.8 cm) below the top of the wingwall nearest to the backwall at the mid-height of the tapered 

wall. For the 45° skewed abutment the maximum wingwall moment was 14x larger on the obtuse 

side of the abutment compared to the acute side and 7x larger compared to the maximum moment 

from the non-skewed abutment. 

5. Lateral soil pressures were significantly higher on the east (obtuse side) wingwall compared to 

the west (acute side) wingwall on the 45° skewed abutment. Soil pressure distributions acting on 

non-skewed wingwalls were similar in magnitude to the west (acute side) wingwall on the 45° 

skewed abutment. 
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