TRANSPORTATION POOLED FUND PROGRAM QUARTERLY PROGRESS REPORT

Lead Agency (FHWA or State DOT): _____

INSTRUCTIONS:

Project Managers and/or research project investigators should complete a quarterly progress report for each calendar quarter during which the projects are active. Please provide a project schedule status of the research activities tied to each task that is defined in the proposal; a percentage completion of each task; a concise discussion (2 or 3 sentences) of the current status, including accomplishments and problems encountered, if any. List all tasks, even if no work was done during this period.

Transportation Pooled Fund Program Project #	Transportation Pooled Fund Program - Report Period:
(i.e, SPR-2(XXX), SPR-3(XXX) or TPF-5(XXX)	□Quarter 1 (January 1 – March 31)
	□Quarter 2 (April 1 – June 30)
	□Quarter 3 (July 1 – September 30)
	Quarter 4 (October 1 – December 31)
Project Title:	
Name of Project Manager(s): Phone N	Imber: E-Mail

Lead Agency Project ID:	Other Project ID (i.e., contract #):	Project Start Date:
Original Project End Date:	Current Project End Date:	Number of Extensions:
	_	

Project schedule status:

On schedule	On revised schedule

Overall Project Statistics:

Total Project Budget	Total Cost to Date for Project	Percentage of Work Completed to Date	

□ Ahead of schedule

□ Behind schedule

Quarterly Project Statistics:

Total Project Expenses	Total Amount of Funds	Total Percentage of
and Percentage This Quarter	Expended This Quarter	Time Used to Date

Project	Description	ì
---------	-------------	---

Progress this Quarter (includes meetings, work plan status, contract status, significant progress, etc.):

Anticipated work next quarter:

Significant Results:

Circumstance affecting project or budget. (Please describe any challenges encountered or anticipated that might affect the completion of the project within the time, scope and fiscal constraints set forth in the agreement, along with recommended solutions to those problems).

Potential Implementation:

Property		Test					
Original		Meth od	Colorado	Idaho	Kansas	Ohio	Wisconsin
Phase angle	@ Grade Tem p.	T315	-	-	-	X (76-80 max)	X (73-79 max)
Specific Gravity	15.6°C	D70	-	-	-	-	X (Report)
Ductility, cm	4°C	D113 T51	X (50 min)	-	-	X (28 min)	-
Toughness and Tenacity	25°C	D5801	Х	-	-	X	-
Separation of Polyr	ner, °F	D5976	-	-	X^1 (2 max)	$\begin{array}{c} X^2 \\ (10 \text{ max}) \end{array}$	-
Solubility, %)	D5546	-	-	-	X (99 min)	-
Homogeneity (Scree	en Test)		-	-	-	Х	-
Acid or Base Modif	fication	CP-L	X (Pass)	-	-	-	-
RTFO Residue							
Elastic Recovery, %	25°C	T301	X (50 min)	X (50 min)	X (45 min)	X (65 min)	X (60 min)
Ductility	4°C	T51	X (20 min)	-	-	-	-
MSCR		TP70	-	-	-	_	-

 Table 1: Summary of Current PG Plus requirements by Partner State DOTs

1. @ 163°C, 48 hours

2. @ 171°C, 48 hours

		ived from Questionnan e			
Test Types	State	Reasons for Selection	Comments		
Un10		Durability, More Polymer is better	 Use it for 20 years Would like to replace with MSCR Do not want to stay with current procedure 		
Elastic Recovery	Colorado	Presence of Polymer, Distinguished between modified and unmodified	 Test too long Prefer a better test Would like to stay at 50% 		
	Kansas	Ensure Polymer modification rather than PPA & GTR, Good experience with PMB	• Consider DSR only if it is repeatable/reproducible and give the same polymer loading as ER		
	Wisconsin	Polymer Loading	• Moving to MSCR in 2016		
Phase Angle	Ohio	Polymer Loading	 Willing to consider MSCR but would like to see the test run on original rather than RTFO Use it in combination with ER 		
Dustility	Ohio	Specifically to allow using SBR which fails the ER	DSR or MSCR will be preferredMinimum 3.5% SBR		
Ductility	Colorado	Done at 4C to control thermal cracking	• Would consider a new method if performance related		
Transformers	Ohio	Same as ductility	Same as Ductility		
and Tenacity Colorado Prese		Presence of Polymer	• Willing to change it to a new test method		
Separation of	Kansas	Avoiding using GTR and have the polymer stable	No comment		
Polymer	Ohio	Prevent cheap formulation	• Could be DSR based but softening point is easy		
Acid or Base Modification	Colorado	Avoiding PPA	No comment		
Solubility	Ohio	Avoiding clay and Refined Motor Oils	• FTIR and XRF are too expensive		
Homogeneity	Ohio	Avoiding non blended polymers	• FL microscope is pretty simple		

 Table 2: Summary of Responses Received from Questionnaire