16th Quarterly Progress Report to the FEDERAL HIGHWAY ADMINISTRATION (FHWA)

On the Project THE IMPACT OF WIDE-BASE TIRES ON PAVEMENT DAMAGE DTFH61-11-C-00025

For the Period January 1st to March 31st, 2015

Submitted by Illinois Center for Transportation University of Illinois at Urbana-Champaign

																								MIN ESS				N																							
FHWA Researc	· · · · · · · · · · · · · · · · · · ·	FH61-1 iois Ce				spol	tati		Y:	20	15	(Qua	rter	: 16	1							JAL	_33			-	-	,	1	1	-	Jan	uary	/-Ma	arch	1	1	-	1	-	_	1	-	-				1	1	
		ad L. A			- Call	000	tati	0																																											
PHASE	RESEARCH TASK	<			2	2011								2	012									20	13								2	2014	1				T					20	015						STIMATED % COMPLETION
			Α	M J	J	А	S	0	NC	J	F	Μ	A N	1 J	J	А	S	1 0	NC) J	F	MA	M	IJ	J	A S	0	Ν	D,	JF	= M	А	Μ	JJ	A	S	0	N	D.	JF	- N	V P	۸M	i J	J	А	S	0	NC	D	
1	1.1. Comprehensive literate review and synthesis on p	bast																																							╀	\downarrow	╇	L	F	П	_	\downarrow	+		100
	and current research		20	60 90	100	D	\square	_	+	_		_	_	_					_	_	\square	_	_	$\left \right $	_	_	_	\square	_	_	_		_	_	_			_	+	_	╇	╇	╇	┢	⊢	⊢∔	\rightarrow	+	+	_	
	1.2. Experimental plan and modeling framew ork		_	50		80	400	_	+				-				_	_	_	-		_	+		_	_	-		+	_			_	╋	-		_	_	+	_	╀	╇	┾	╞	┢	\vdash	_	+	+	-	100
	1.3. Implementation and ma	arketing		30	00	80	100																																		t	╈	\pm	t		⊢		+	\pm		100
	plan			10 50	70	80	100																																												
	1.4. Phase I report																																																		100
				60	70	80	100																																		⊥	⊥	\perp	╞	\vdash	\square	$ \rightarrow $	\perp	\perp		
	1.5. Conference call with p	banel	0 1	50	+	100		-	+	-	\square	-	-				_	+		-			+		+	_	+		+	+		\vdash	+	+			_		+		╋	╋	+	┢	┢	⊢	+	+	+	+	100
	1.6. Presentations to relevation of the second symposic conferences and symposic					_		4	+		F		-					+		-	H		_		_			H	_			\square	_		_				-		╀	╀	+	F	F	H	—	+	\mp		100
2	2.1. Prepare experimental																																								╈	╈	+		T				+		100
	equipment, test structures	, and				0	0	0	0 0	10	30	40	45 50	0 60	70	85	90	95 10	00													Π									T	T	Τ		Γ	П			Τ		
	2.2. Conduct experiments,																				П							П													+	T	+			\square	T	+	T		100
	including material characterization and accel	lerated			T						10						70	40 4) 45					62 0			72		75 7	_					90	92	95 9		7 98	T	T	1	T	T	Π		+	╈		
	loading						0	0	0 0	5	10	20	25 34	5 40	50	00	10	40 4	0 40	/ 45	50	55 5	5 57	00	62 0	55 66	70	12	13 1	5 7	7 80	02	04 0	55 6/	00	90	92	95 8	35 9	7 90	-	50	+	+	t	H	+	+	+		100
	2.3. Conduct modeling					0	0	0	0 0	1	2	5	6 8	10	20	25	30	30 3	5 35	i 40	45	50 5	0 53	55	56	57 59	60	61	62 6	65 6	8 70	85	90 9	95 96	6 97	97	97	97 9	97 9	8 99	9 10	00	-	1		\square	1	+	T		
	2.4. Development of analys	aia 4a al					П																																							П					95
	2.4. Development or analys	515 1001											0 0	0	0	5	5	10 1	5 15	5 20	25	35 4	0 42	45	46	48 49	51	52	52 5	55 5	8 60	62	65 7	70 75	5 77	80	85	90 9	90 9	2 93	.3 9	15						Ι			
	2.5. Delivery of draft Phase	e II																																												Ц			\perp		85
	report and analysis tool																								0	0 0	0	0	0 (0 0	0 0	0	0	0 10	0 20	30	40	50 5	50 6	0 70	0 8	15				Ш					
	2.6. Present to relevant conferences and symposi	ums																										Ц													⊥			L	L	Ц			\bot		60
					1	+	\square			\square	Ц									_	\square						1			+	-	Щ		_	_	Ц		_	_		+	+	\perp	⊢	⊢	⊢∔	+	+	+	_	
	2.7. Prepare article, techni papers, user manuals, trai TAC meeting, and TRB w e	ning,			╞					$\left \right $	\square									$\left \right $	\square		╀				$\left \right $					$\left \right $		╀		\square			╉		╈	╀	+	┢	┢	┢╋	\top		+		0
<u> </u>	Estimated Progress (%)		1	3 7	8	10	11	11	11 1	13	16	20	21 2	3 27	33	39	43	41 4	0 35	42	45	49 5	0 52	54	54	56 57	58	59	60 6	32 6	4 65	71	73 7	76 79	81	83	86	88 9	38 9	91 93	3 9	16	+	+	⊢	\vdash	+	+	+	+	97
	Planned Progress (%)			3 7				21	25 20																						100												+-	+	\vdash	H	+	+	+		100

QUARTERLY PROGRESS REPORT QUARTER 16

The Impact of Wide-Base Tires on Pavement Damage – A National Study

1. Work Performed

The following tasks were accomplished during this quarter:

- Finite element re-runs were completed.
- Artificial Neural Networks (ANN) models were developed based on the new FEM data. Models for each response and for each pavement structure (thin and thick) were also developed. Appendix A shows the model error for eleven responses. The figure presents the average error on all ANN models developed for each pavement structure.
- The adjustment factors were updated based on the new data. Values of adjustment factors slightly changed, but conclusions on the effect of wide-base tire and model complexities remained the same.
- Damping values were corrected for the thick pavement cases. Twenty-four cases, encompassing the scope of the simulation matrix, were run. Adjustment factors for damping are presented in Appendix B.
- A section from the Smart Road and other thin sections at University of Illinois were used to validate the finite element model. A sample of the validation is presented in Appendix C

2. Work to Be Accomplished in the Next Quarter

- Complete sensitivity analysis for ANN models
- Validate finite element model using section from Florida, Ohio, and UC-Davis
- Update ICT-Wide tool
- Finalize thin and thick pavement damage analyses.

3. Problems Encountered

• No issues this quarter. All encountered errors were corrected.

4. Current and Cumulative Expenditures

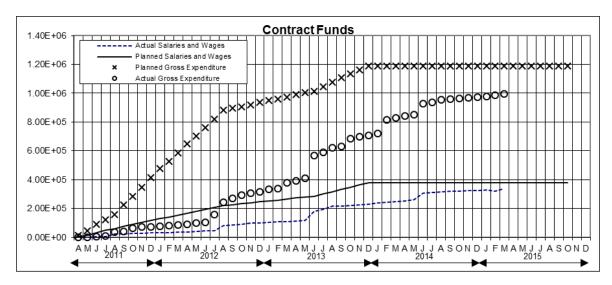


Figure 1. Project's expenditure (based on original plan without amendments).

5. Planned, Actual, and Cumulative Percentage of Effort

Figure 2. Project's progress (based on original plan without amendments).

APPENDIX A ARTIFICIAL NEURAL NETWORK ERROR

Figure A-1 shows the average ANN model errors for eleven pavement responses and for thin and thick pavement structures. This is the error between ANN predicted and FEM calculated pavement responses. The error bars show one standard deviation of error higher and lower than average. According to the figure and also goodness of fit measure (R²), which is higher than 0.98 for all responses, neural network models were able to accurately predict the responses. Final ANN analysis with detailed sensitivity analysis will be provided in next report as some data are being revised.

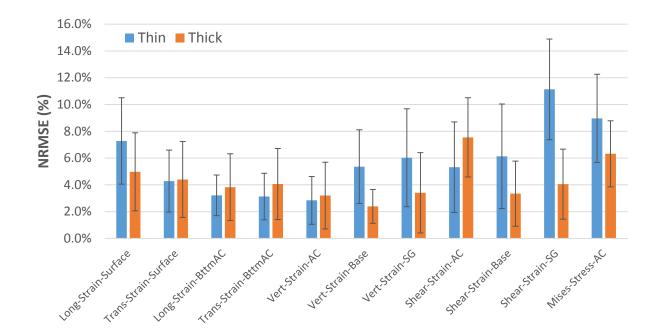


Figure A-1. Normalized Root Mean Square Error (NRMSE) result for thin and thick cases, average on all ANN models

APPENDIX B Damping Correction

To account for damping and mass inertia effect, damping properties must be defined for all pavement layers in the finite element model. The sources of damping can be an arbitrary damping factor, friction factor, or viscoelastic material behavior. Given that the asphalt layers are characterized with viscoelasticity, the structural damping is appropriately accounted for. However, the granular layers are defined with elastic moduli values, which does not consider dissipation.

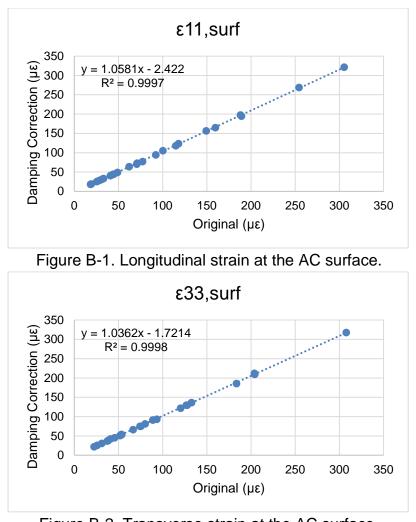
Using the Rayleigh damping model in ABAQUS, energy dissipation can be considered for the elastic granular base and subgrade layers. Two damping coefficients are required for the Rayleigh model, α and β , which are dependent on a proper damping ratio. Based on Wang (2011), the critical damping ratio for soils range from 2% to 5%. For this study, 5% is used. In addition, the typical natural frequency of 62.8 rad/sec (10Hz) is assumed.

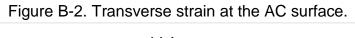
Given the aforementioned parameters, α and β results in 3.1416 and 7.95E-4, respectively. However, the thick pavement cases were run using 0.02 and 0.06. For the same damping ratio of 5%, this corresponds to 0.695 rad/sec, a significantly low natural frequency. The difference in Rayleigh damping coefficients poses an issue of inaccurate material property representation. In addition, as these parameters are not held constant for both thin and thick pavements, a direct comparison between the two cannot be conducted appropriately.

Due to the fact that the relationship between damping influence and pavement layer thickness are inversely proportional, the simulation case selected as an initial check included the combination of lowest pavement layer thicknesses, highest applied load, tire inflation pressure, and *weak* material properties from the thick pavement matrix.

Specifically, the load case considered the applied load of 79 kN and the tire inflation pressure of 862 kPa. The selected structure has layer thicknesses of 125 mm and 150 mm, for the total asphalt concrete (AC) and granular base layers, respectively. The material characterizations were assumed *weak* for both AC and base layers.

Table B-1 shows that the difference between the baseline and corrected values ranged from 2.2% to 8.6%, wherein the maximum stemmed from the shear strain values of the granular base layers. It is also considered that 5% variation for the horizontal strain in the AC layers, connected to fatigue distresses, can have a significant impact, especially when taking the number of loading repetitions into account.


L4_AC125	5W_B150W		
Pavement Response	Corrected	Base	Diff (%)
Long strain, surface of AC	372.7	352.9	5.3
Trans strain, surface of AC	332.4	320.8	3.5
Long strain, bottom of AC	321.5	305.4	5.0
Trans strain, bottom of AC	318.1	307.8	3.2
Vertical strain, AC	324.2	311.4	3.9
Vertical strain, Base	795.9	778.4	2.2
Vertical strain, Subgrade	975.4	949.9	2.6
Shear strain, AC	145.9	142.5	2.3
Shear strain, Base	242.1	221.4	8.6
Shear strain, Subgrade	288.7	277.7	3.8
Mises Stress, AC	4.1	4.0	2.4


Table B-1. Difference in Responses Using Correct Damping Parameters

However, due to the fact that the impact of damping decreases as pavement thickness increases, it was deemed appropriate to perform a repetition of the extreme cases to adequately cover the scope of the thick simulation matrix. From this approach, 24 cases were rerun. The factorial included:

- Two pavement structures: AC125_B150 and AC412_B600, wherein the nomenclature "AC125_B150" denotes, AC layer thickness of 125 mm and granular base thickness of 150 mm;
- Two material properties: *weak* and *strong* for both AC and base layers; and
- Six loading conditions: L1, L5, L4, L9, L11, and L12 (specific information of these cases can be referenced from previous reports).

Figures B-1 through B-11 illustrate the relationship between the baseline and corrected cases for all critical pavement responses.

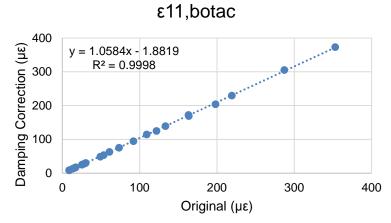
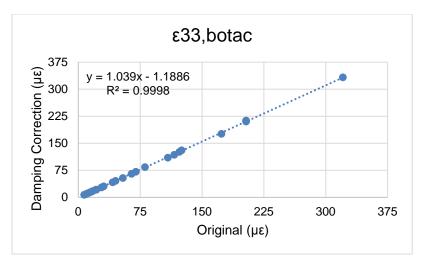
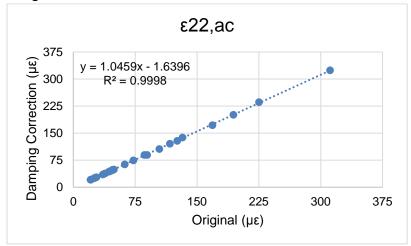




Figure B-3. Longitudinal strain at the bottom of the AC.

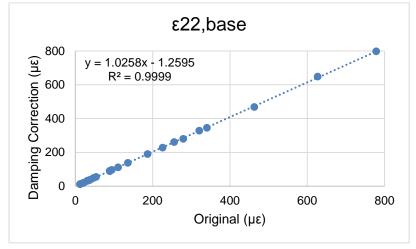
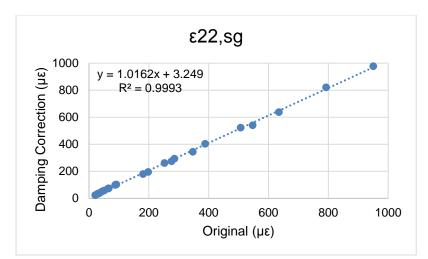
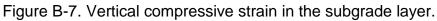
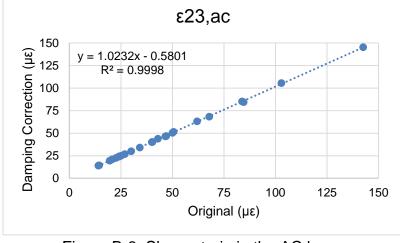
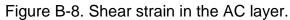






Figure B-6. Vertical compressive strain in the base layer.

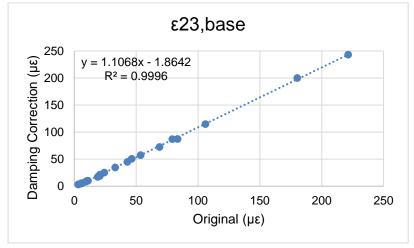


Figure B-9. Shear strain in the base layer.

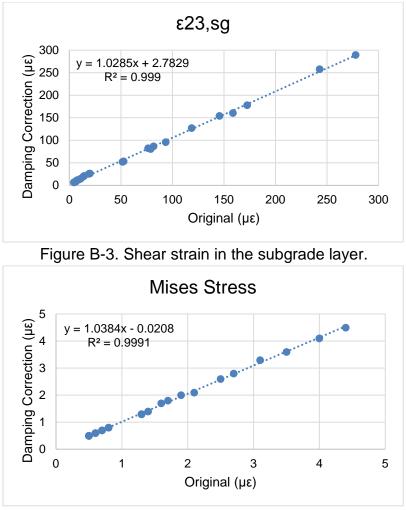


Figure B-11. Mises stress in the AC layer.

Based on the plots that compares the baseline values (with inaccurate damping parameters) to the same cases with the corrected damping parameters, one can observe a linear relationship. For all the rerun cases, all pavement responses were underestimated ranging from 1.6% to 10.7%, as indicated in Table B-2.Therefore, the slopes can be treated as damping adjustment factors for all the critical responses. By applying these factors on the remainder of the database, the finite element model represents the granular materials more accurately, and a direct comparison between the thin and thick case can be done appropriately.

Desman	Damping Adjustment Factor							
Response	Slope	RMSE						
Long strain, surface of AC	1.058	2.737						

Table B-2. Difference in Responses Using Correct Damping Parameters

1.036	2.038
1.058	2.378
1.039	1.620
1.046	1.950
1.026	2.473
1.016	7.874
1.023	0.726
1.107	2.251
1.028	3.784
1.038	0.042
	1.058 1.039 1.046 1.026 1.016 1.023 1.107 1.028

Reference:

Wang, H. Analysis of Tire-Pavement Interaction and Pavement Responses Using a Decoupled Modeling Approach. Dissertation. University of Illinois at Urbana-Champaign. Retriever from <u>http://hdl.handle.net/2142/24326</u>, 2011.

APPENDIX C FEM VALIDATION USING THIN PAVEMENT SECTION

Pressure at the bottom of base

FEM was validated for a thin section that was built at the Illinois Center for Transportation, It has 5 in of HMA layer and 12 in of base layer. Loading conditions were 8 kips tire load and 100 psi tire inflation pressure for dual tire assembly. Two pressure cells were installed at the bottom of the base. Data were collected for four runs. The eight pressure measurements are given in Table C-1.

Table C-1. Field Pressure Measurements at the Bottom of Base

Vertical St.										
(kl	Pa)									
10.589	14.456									
13.784	16.104									
15.934	14.906									
19.500	17.321									

The mean of the eight field vertical pressure measurements is 15.32 kPa with a standard deviation of 2.62 kPa. On the other hand, the FEM model predicts the vertical pressure as 16.8 kPa at the bottom of the base. FEM provides quite accurate approximation for vertical pressure at the bottom of the base

The transverse strain at the bottom of AC was used for the validation. There were four strain measurements for this section because one strain gauge was installed (1x4 pass). Table C-2 shows the strain measurements from the strain gauge.

Table C-2. Field Strain Measurements at the Bottom of AC

Transverse Str. (με)
68.581
59.406
76.288
79.323

The mean of these four field transverse strains measurements were calculated as 70.9 μ with 8.9 μ standard deviation. FEM resulted in 53.3 μ . FEM's approximation for transverse strain is not as good as for vertical pressure. Higher strain would be expected from the field for thin pavements due to potential bending of the gauge when supported by weak subgrade/base (this is the case for the studied section: subgrade has 45 MPa resilient modulus). In that case, the value coming from field for transverse strain is actually

summation of principal transverse strain and strain caused by bending effect which FEM does not consider.