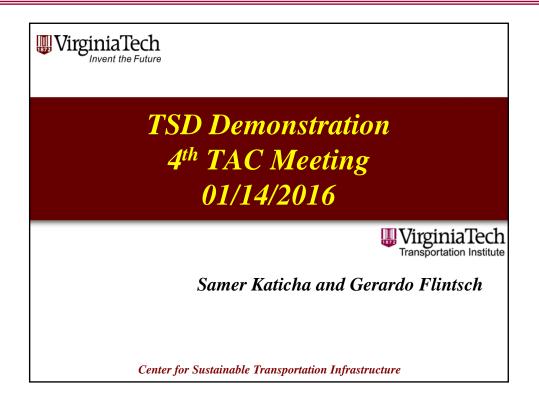
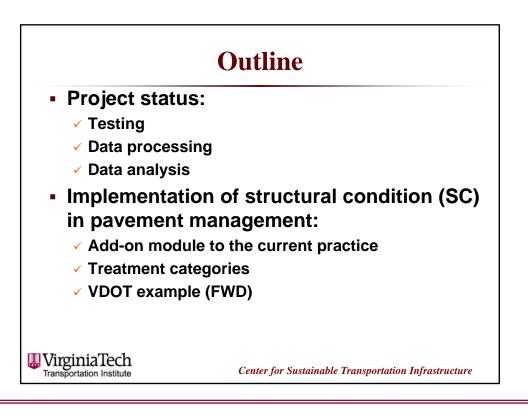
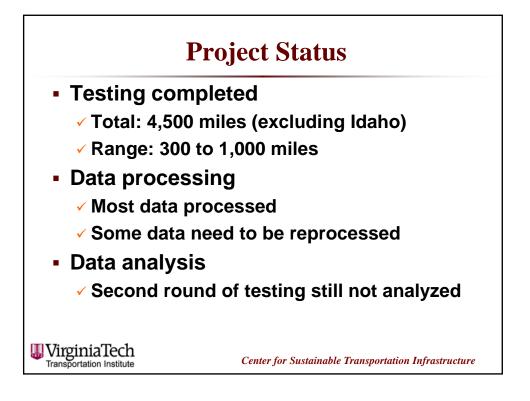
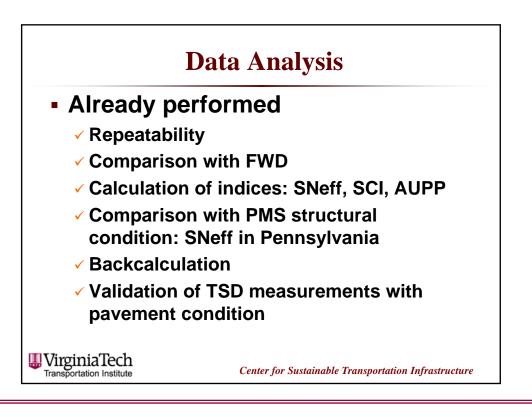
TPF-5(282)

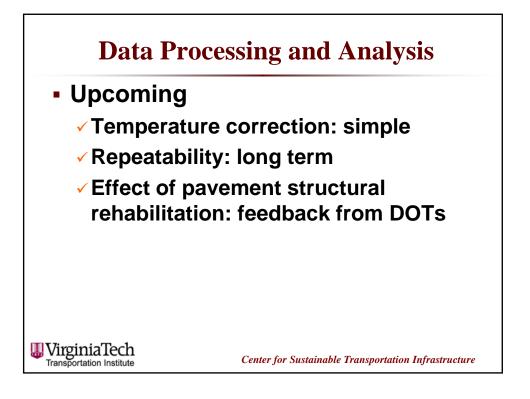
Demonstration of Network Level Pavement Structural Evaluation with Traffic Speed Deflectometer

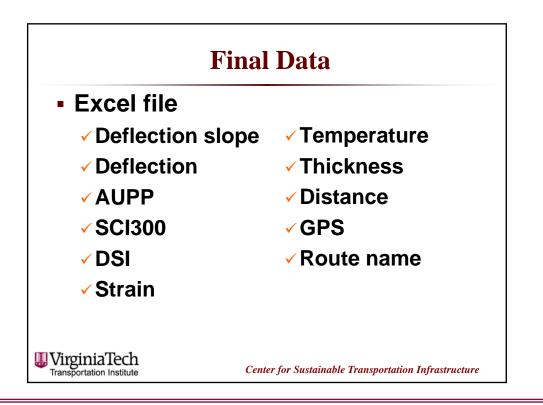

Fourth Meeting of the Technical Advisory Committee

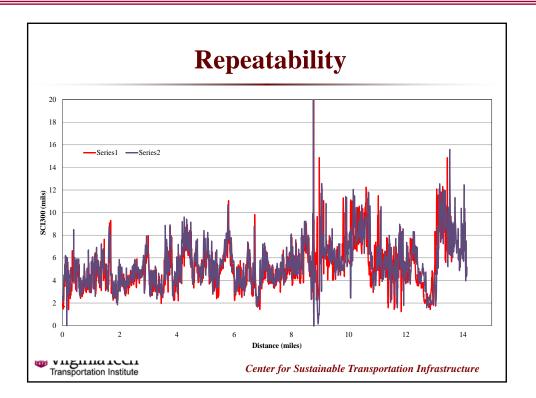

January 14, 2016 Conference Room 302 The Walter E. Washington Convention Center 801 Mt Vernon Pl NW, Washington, DC 20001

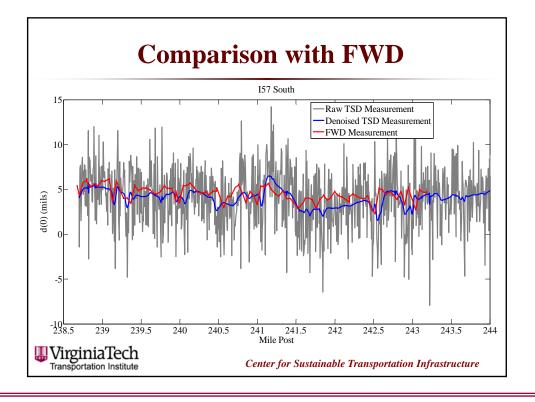

Flexible Agenda

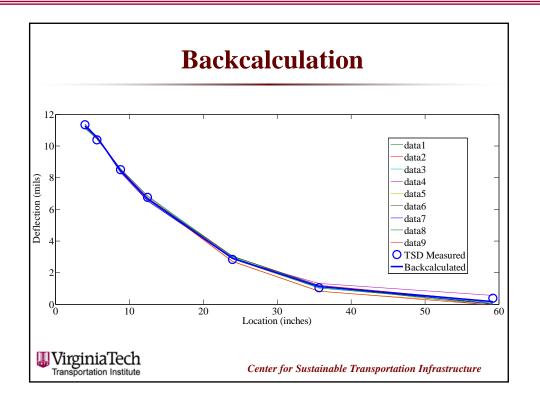

9:00 - 9:15	Opening remarks and introductions (Siva/All)
9:15-10:00	Update on second round of testing and analysis (Samer Katicha/Gerardo Flintsch)
10:00 – 12:00	 Data analysis and final report TSD data Potential structural indices and their strengths and value in SHA PMS process Auxiliary data Analysis Example Implementation of TSD data into PMS
12:00 - 1:00	Lunch
1:00 - 1:45	The Australian experience (Kim Sedgwick/Richard Wix - ARRB)
1:45 - 2:15	TSD device and data analysis update (Jørgen Krarup/Greenwood Engineering)
2:15 - 2:45	 Update on DaRTS and BeCATS activities (Brian Ferne) ✓ DaRTS4 meeting ✓ HiSPEQ ✓ Other
2:45 - 3:30	Implementation of measurements into pavement management system - discussion (All)
3:30 - 4:00	Feedback from consortium members and next steps

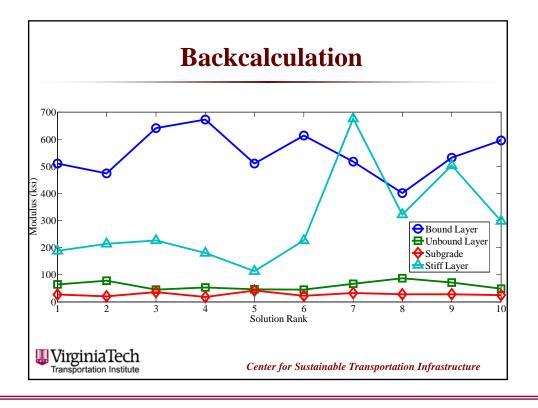

Web/Teleconference for those wishing to attend remotely: Webinar URL: <u>https://connectdot.connectsolutions.com/siva</u> Call-in numbers: 1-888-557-8511 (toll free) or 1-215-446-3649 (toll paid) Access Code: 4993555 (audio will also be available through the computer speaker/microphone)

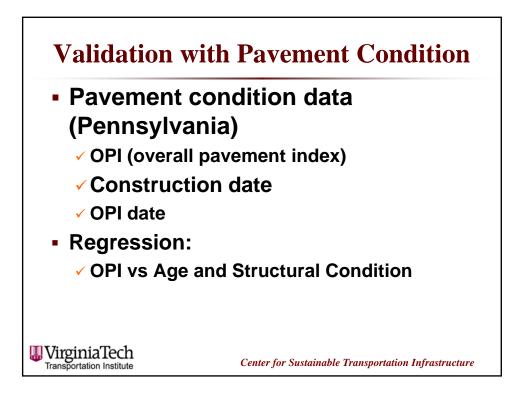


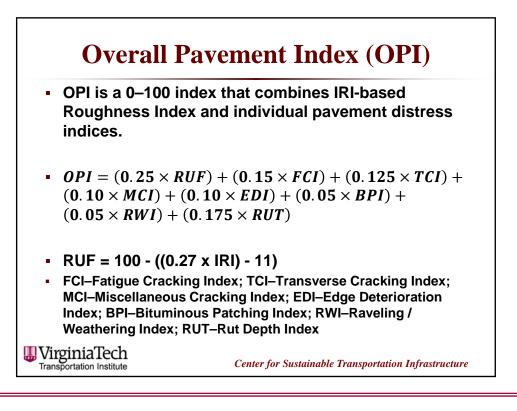


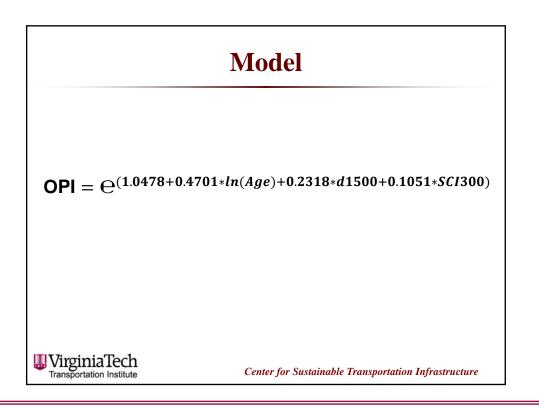


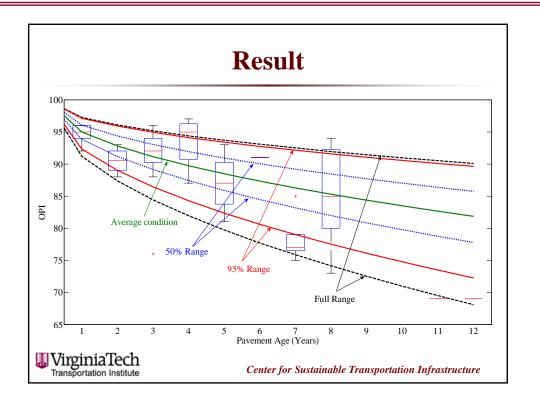


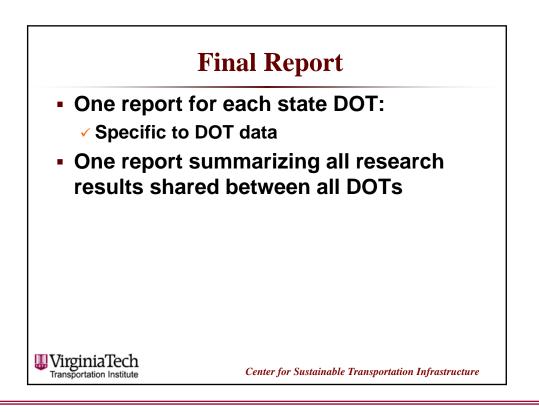


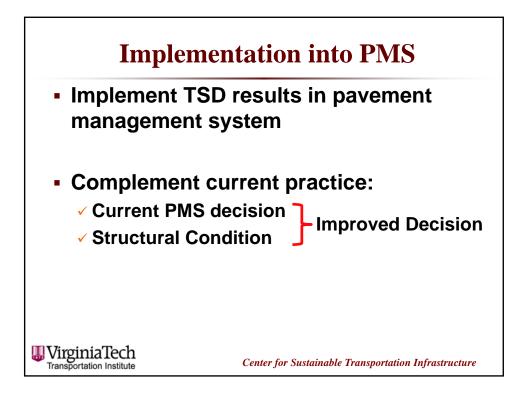

4th TAC meeting

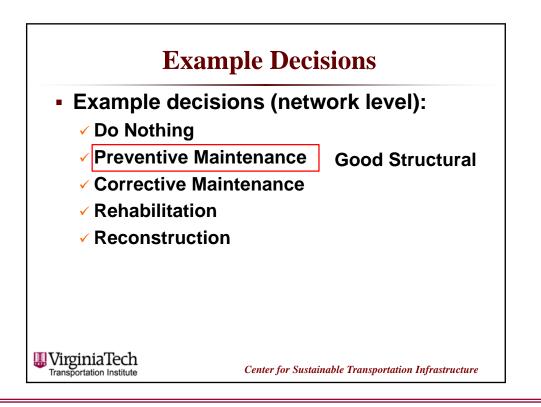


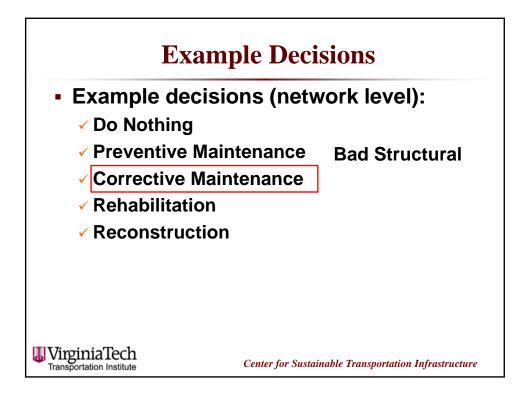


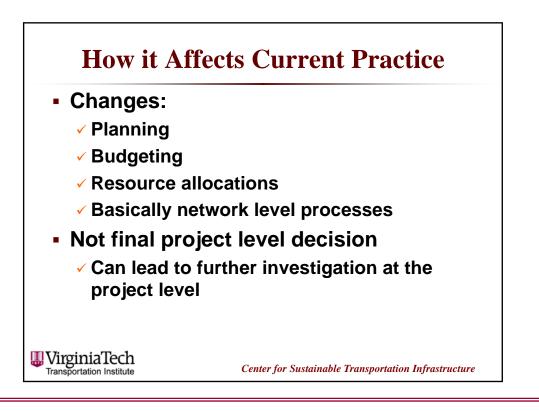


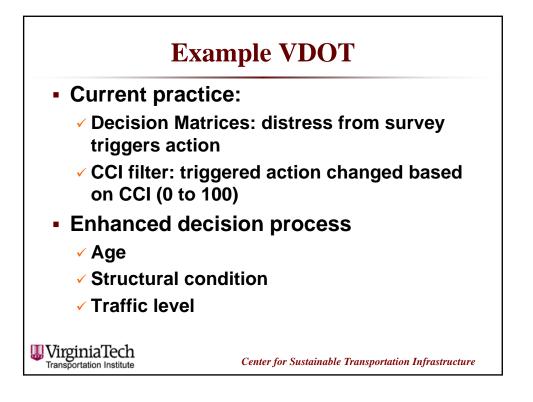


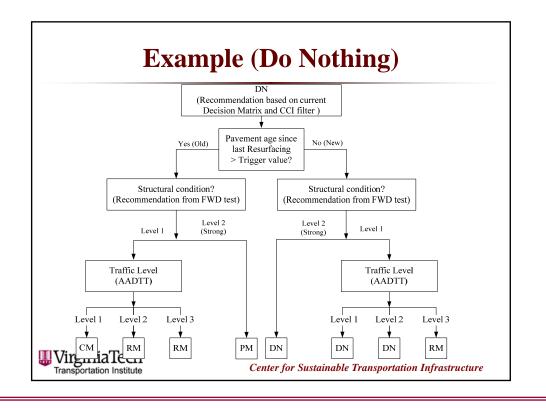


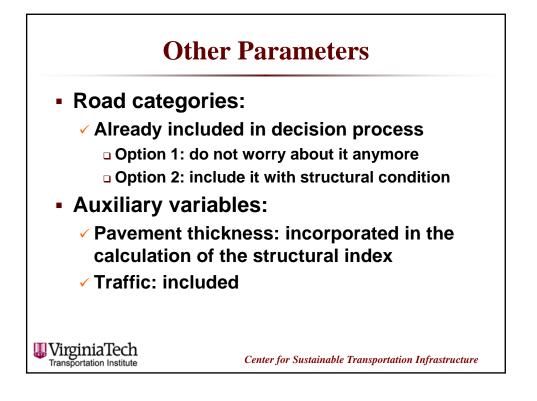

CONS_DATE	IRI	SN	OPI	OPI_Date	D0	D100	D200	D300	D600	D900	D1500
2002	61	5	69	2014	14.34	13.23	10.94	8.825	4.301	2.229	1.173
2003	62	4.1	69	2014	12.23	11.74	10.67	9.549	6.582	4.599	2.59
2006	61	5.3	93	2014	8.462	7.912	6.786	5.785	3.345	1.991	1.233
2006	61	5.9	94	2014	8.721	8.21	7.135	6.124	3.583	2.177	1.359
2006	61	5.3	92	2014	9.075	8.529	7.383	6.297	3.674	2.24	1.316
2006	61	5.4	93	2014	11.66	11.1	9.734	8.245	4.66	2.622	1.246
2006	61	4.5	93	2014	5.429	5.236	4.712	4.102	2.43	1.449	0.887
2005	52	3.4	85	2013	12.02	10.71	8.157	5.891	1.403	-0.194	-0.451
2005	52	3.4	89	2013	14.15	12.87	10.35	8.056	3.21	1.094	0.202
2005	52	3.4	84	2013	17.96	16.04	12.27	8.945	2.61	0.367	-0.255
2005	52	3.4	81	2013	16.78	14.81	11.04	7.851	2.1	0.288	-0.138
2005	52	3.4	75	2013	18	16.08	12.32	9.015	2.908	0.85	0.123
2005	52	3.4	89	2013	17.99	15.71	11.45	8	1.932	0.095	-0.257

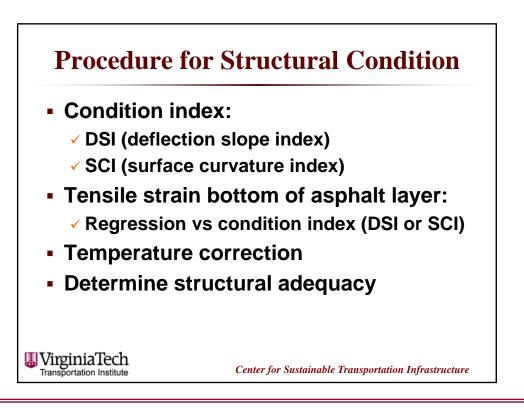




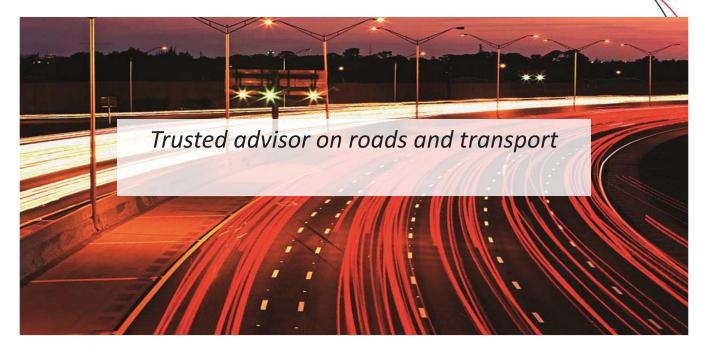





Analysis Updates - Samer Katicha, VTTI



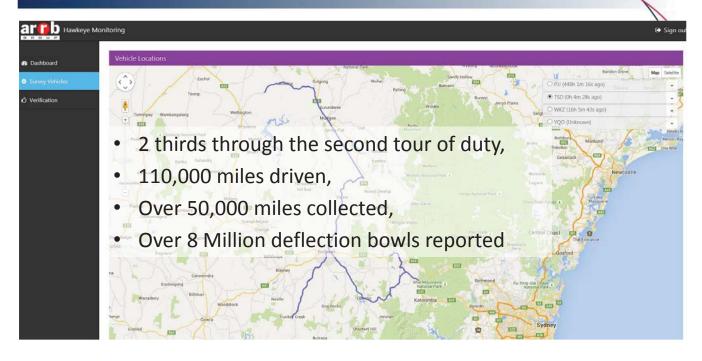
The Australian TSD Experience


Fourth Meeting of the TPF-5(282) Technical Advisory Committee 14 January 2016, Washington, DC

Trusted advisor to road agencies

Our purpose

Where we've come from


Australian/NZ TSD Collection Route

www.arrbgroup.net

Current TSD Project Progress

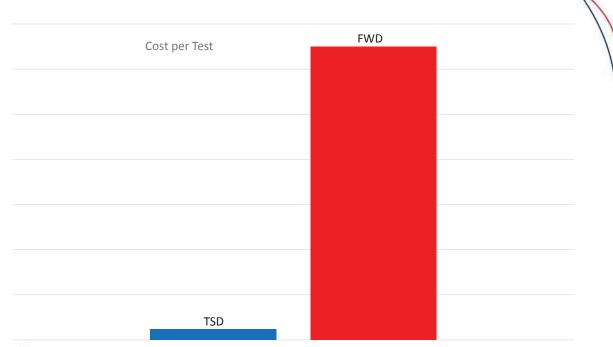
ARRB TSD's

- 7 Doppler Lasers
- Automatic Crack Detection (through LCMS)
- Video Imaging System
- Gipsitrac (enabling geometry)
- GPS/DGPS
- 5 laser profiler

The ARRB TSD

SAFE FAST EFFICIENT

Safe


- TSD moves with traffic flow with no external traffic control requirements
- TSD can complete an 12,000 mile network in 12 weeks
- The equivalent FWD network testing will take 15 years
- Reduces risk exposure and severity considerably over other stationary slow moving devices

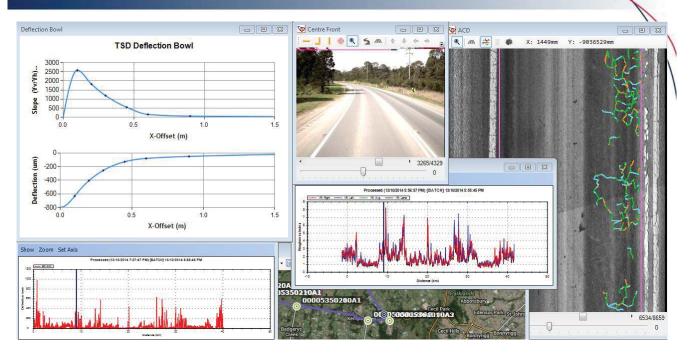
Efficient

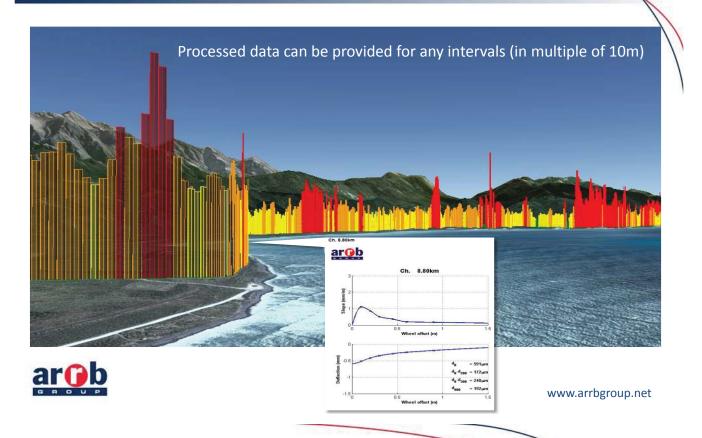
www.arrbgroup.net

<section-header><section-header>

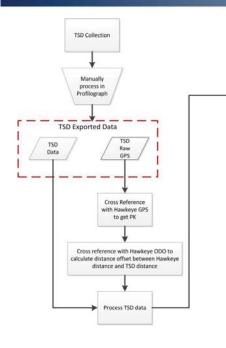
Trusted advisor to road agencies

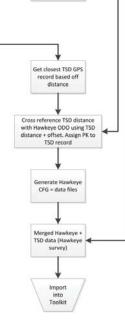
Integration - ARRB development


- LCMS fully integrated and mounted on Hawkeye survey platform
 - Reference points
 - Events
 - DGPS
 - Distance
 - Supplementary imagery
 - Integrated viewing software
 - All other Hawkeye features
- Evaluating current and future applications
- Custom Reports Access to raw crack data enables us to customise result reporting according to client requirements.


www.arrbgroup.net

Simultaneous Collection

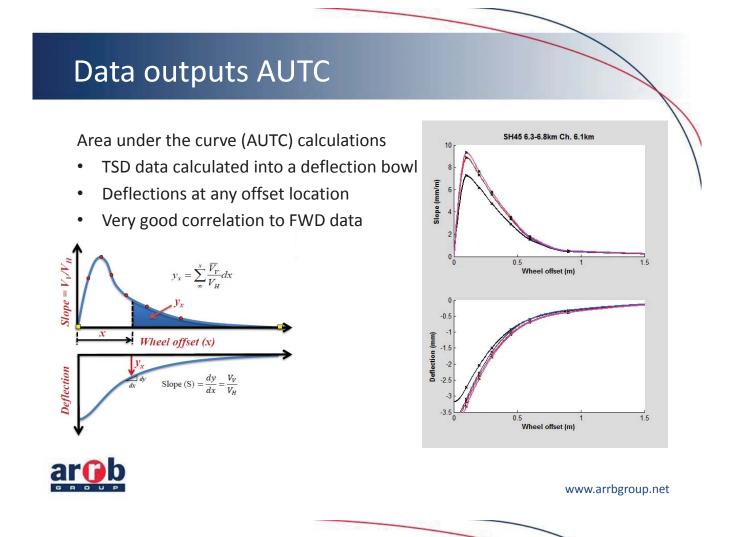




Data outputs

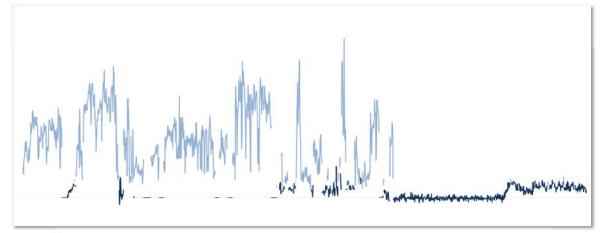
Data Alignment

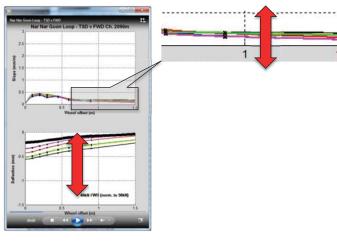
Hawkeye Collection


Common reference device

- Odometer (distance)
- GPS receiver (coordinates)

Merge utility

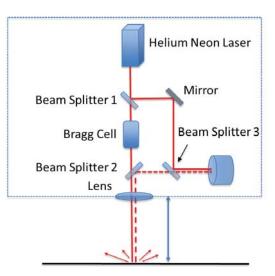

- Primary key GPS time
- Cross reference TSD distance


Improvements – Software refinement

- Refining analysis models
- Increasing valid AUTC calculations on 'raw' velocity
 - minimum of three valid velocity readings
 - = more data reported

Software "Tail Taming"

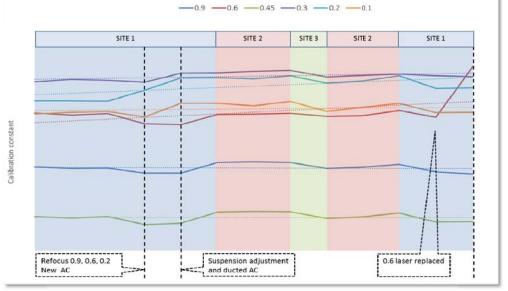
- Increases the repeatability
- Tightens the AUTC model calculation
- = better quality data reported



TSD v FWD - V900 limited Ch 2

Improvements - Hardware

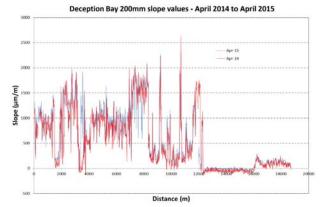
- Re-engineering and strengthening components
- High capacity temperature control
- Tuning hydraulics and power supply systems
- Laser focusing device
 - higher data rate
 - = more valid data



Doppler Calibrations

- Maintaining consistency
- Reducing site dependence

TSD8 Doppler Offset Calibrations



www.arrbgroup.net

Validations and benchmarking

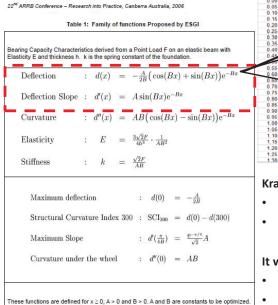
Numerous validations and historical loops:

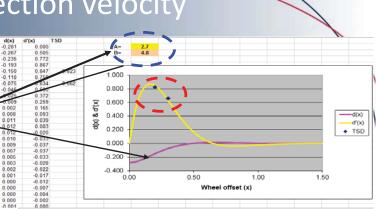
- Good system stability
- Good internal repeatability
- Good historical repeatability
- Good deflection comparability

TSD AUTC Method (Heavy Mathematics Section)

Trusted advisor to road agencies

Doppler deflection velocity – what's that


- Doppler lasers measure vertical velocity of the road surface at points within the deflection bowl.
- Doesn't measure pavement deflection directly.


What to do with these measurements?

- DRD/Greenwood: Beam model to convert measured TSD "slope" (V_V/V_H) v's offset into deflection bowl.
- TRL: Monitor individual TSD "slope" values; correlate with Deflectograph.
- Muller & Roberts (2013): Interpolate TSD slope measurements v's offset; numerical integration for deflection bowl

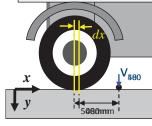
Interpretation of defection velocity

Krarup, Rasmussen, Aagaard & Hjorth (2006):

- Optimise A & B for best fit of slope model to TSD measurements.
- Substitute into deflection eqn. for full bowl profile.

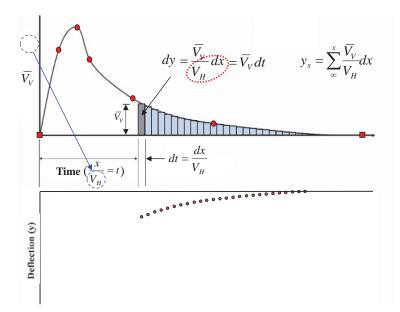
It works, but....

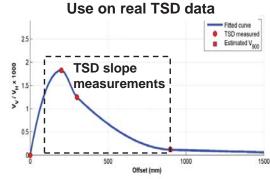
- Only two "levers" to fit models often a poor fit to TSD slope data.
- Any particular model okay at some locations, bad for others.
- Best to avoid using an explicit model altogether...

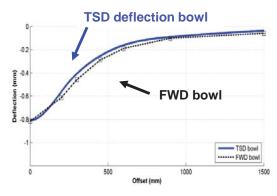


www.arrbgroup.net

Interpretation of deflection velocity

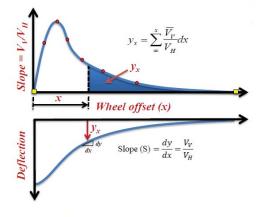

Muller & Roberts (2012)/Area under the Curve Method:

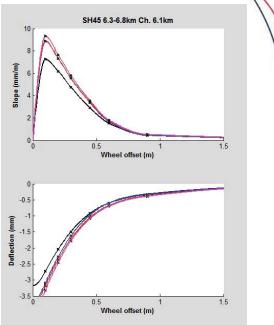

- Velocity is displacement over time
- TSD travelling in the horizontal *x*-direction at 72km/hr (20m/s).
- A single point on the ground 500mm ahead of wheel load.
- This point is deflecting with a vertical velocity (V₅₀₀) in the vertical *y*-direction.
- A short time later ($dt = 1/1000^{\text{th}}$ sec) the TSD has travelled horizontally by: dx = 20mm
- The point is now only 480mm from the wheel load.
- The vertical velocity of the point is now slightly different = V₄₈₀
- The average vertical velocity ($\overline{V_v}$) over the period (*dt*): $\overline{V_v} = \frac{V_{480} + V_{500}}{V_{480} + V_{500}}$
- Same time period (*dt*), for vertical deflection (*dy*) & TSD displacement (*dx*): $dt = \frac{dy}{V_v} = \frac{dx}{V_u}$
- Rearranging: $dy = \frac{\overline{V_V}}{V} dx$



Interpretation of deflection velocity

Plot velocities on $V_V/V_H v$'s offset axes. At 0m and 3.5m V_V is assumed to be 0 Curve fit between lasers and 0 points. Area of each increment = contribution to deflection. Add up increments for full deflection bowl.



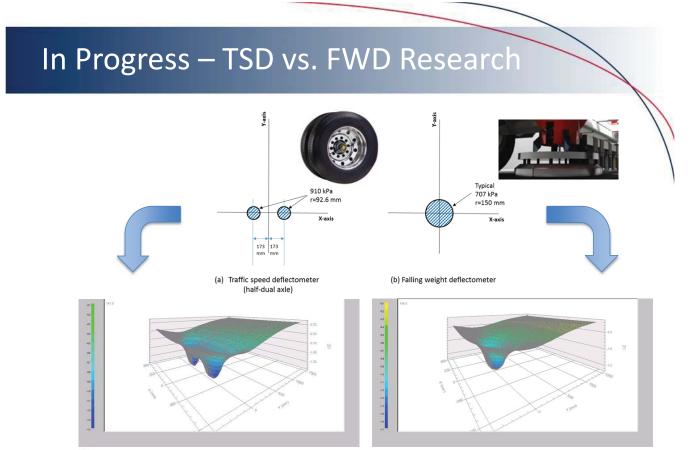

www.arrb.com.au

Data outputs AUTC

Area under the curve (AUTC) calculations

- TSD data calculated into a deflection bowl
- Deflections at any offset location
- Very good correlation to FWD data

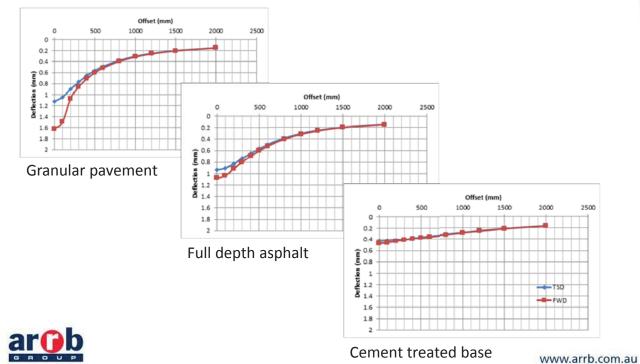
In Progress – TSD vs. FWD Research



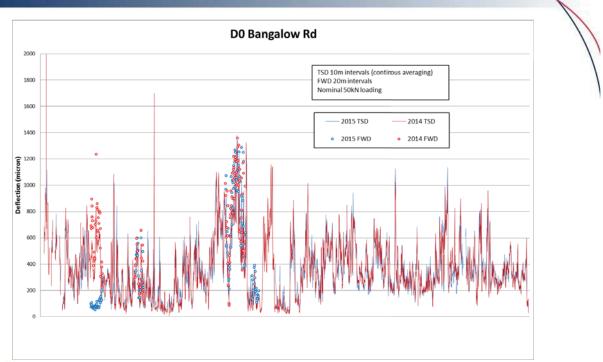
Correlation of TSD and FWD Deflections for a range of pavements:

- Granular pavements
- Stabilised pavement
- Full-depth asphalt pavements
- Concrete pavements

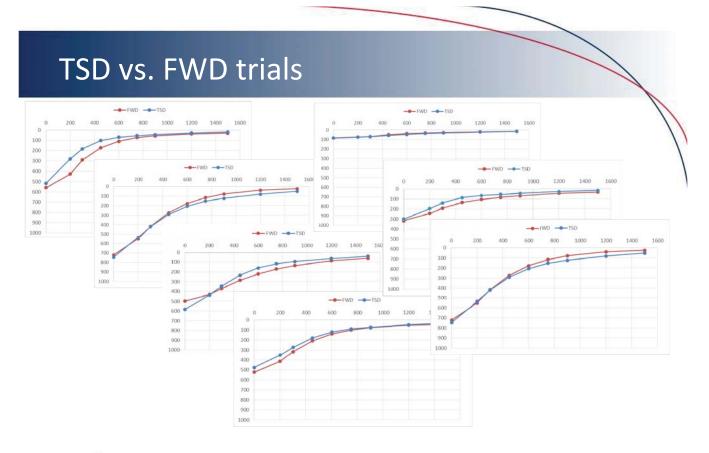
www.arrbgroup.net



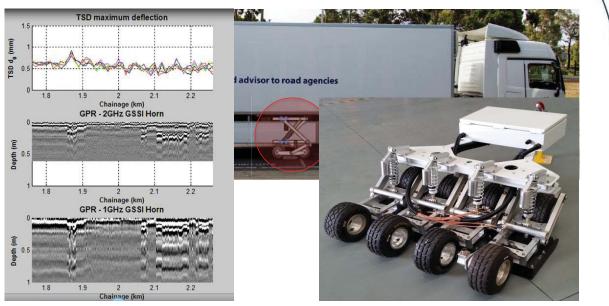
www.arrb.com.au


In Progress – TSD vs. FWD Research

Theoretical computed deflection profile for different pavement types using CIRCLY

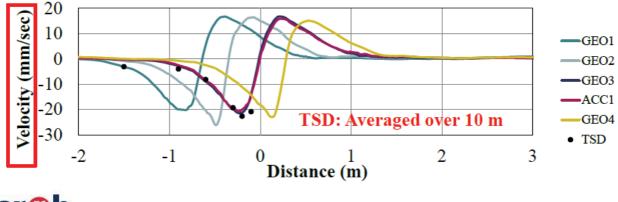


TSD vs. FWD trials



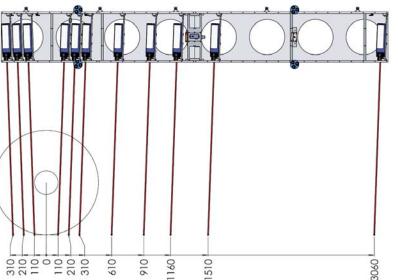
www.arrbgroup.net

Future work - TSD GPR


• Integrated ground coupled GPR pod

Future work - TSD Research

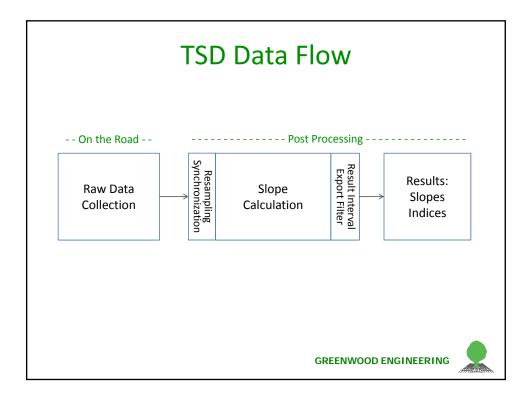
- Further FWD comparisons on other surface and pavement types
- Instrumented pavement surface transducers
 - "Ground Truth" TSD Doppler velocity readings
 - rolling and static deflection
 - dynamic pavement behaviour.

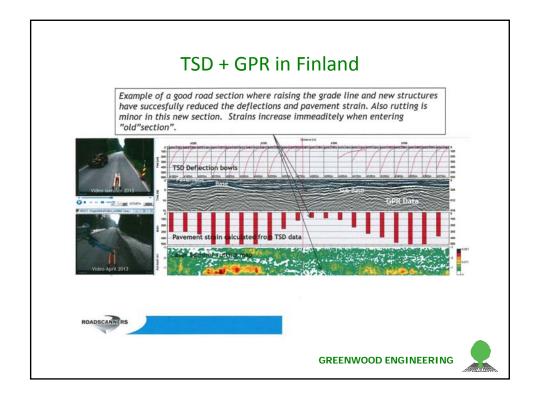


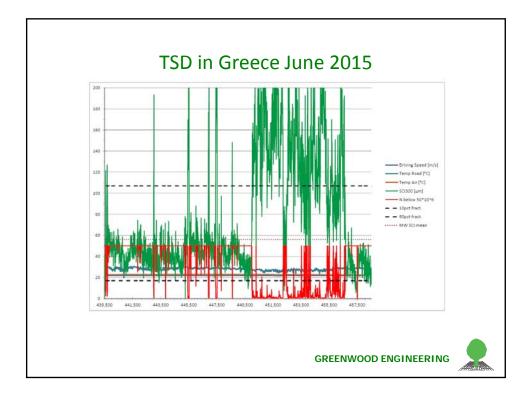
www.arrbgroup.net

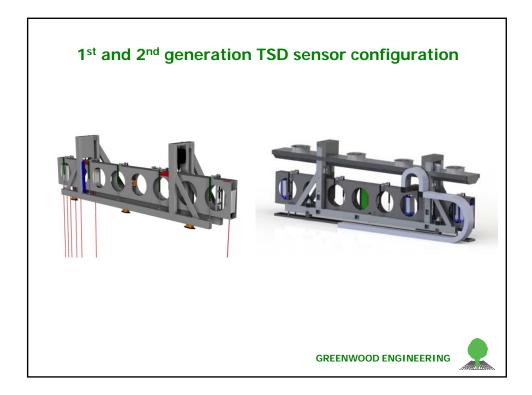
Future work – TSD

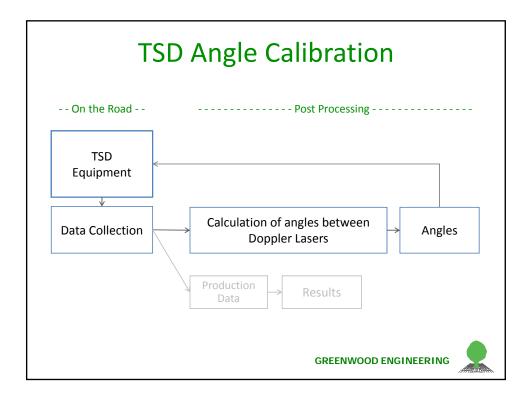
- Doppler laser calibration processes
- Behind the load measurements

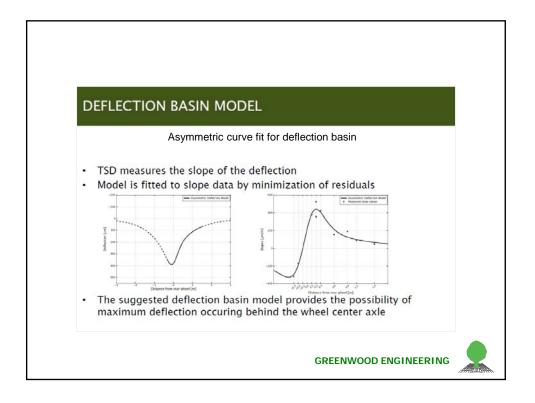


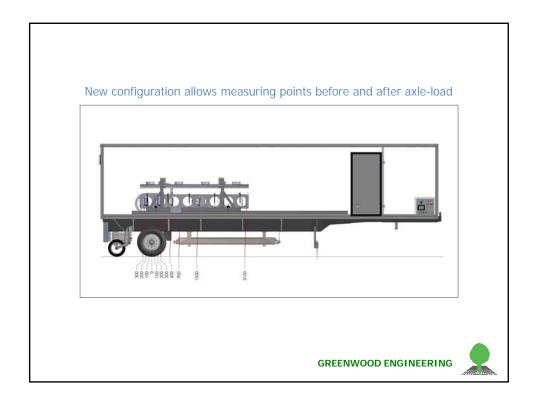

Questions?

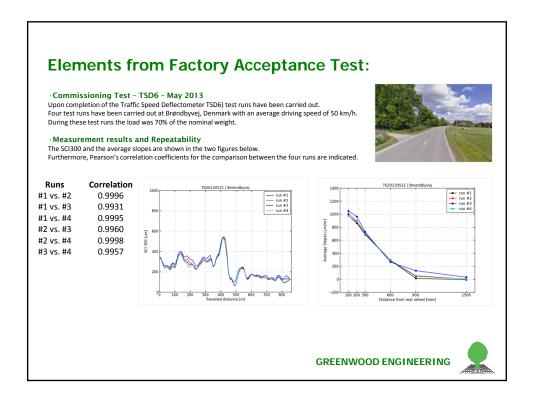


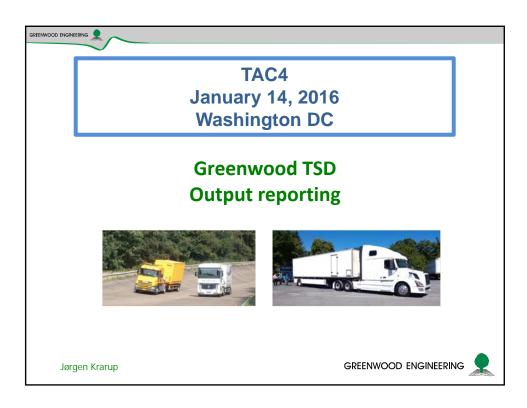


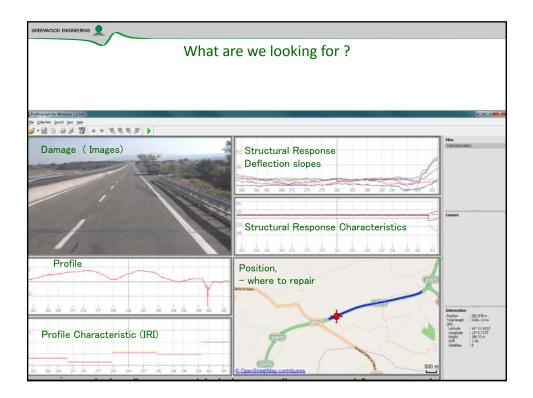


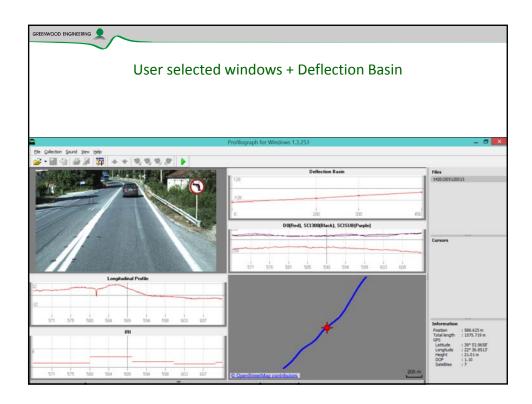


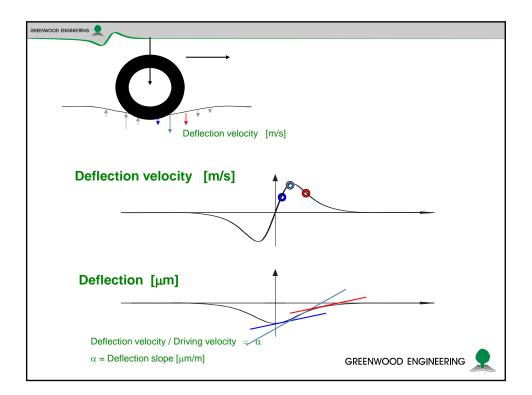


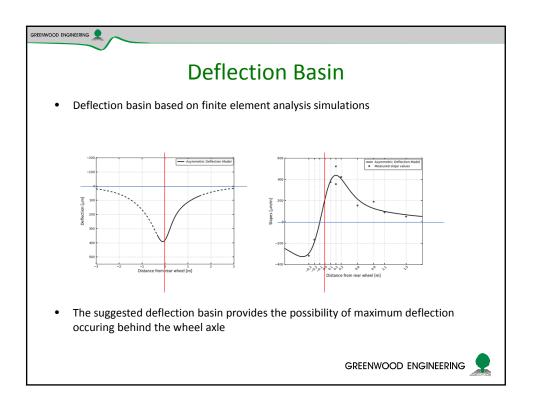


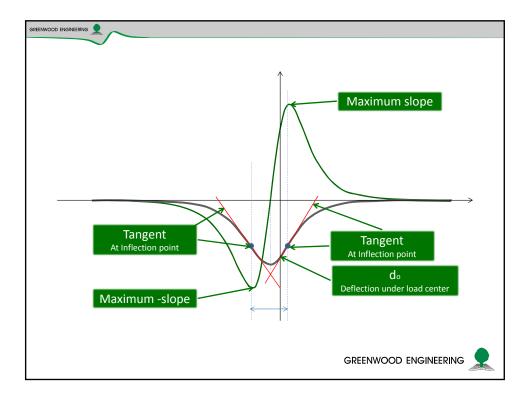

TSD result export example											
SCI300 [um]	SCISUB [µm]	D0fum1	D200[um]	D300[um]	D450[um]	D600[um]	D900[um]	D1200[um]	D1500[um]	Goodness of fi	
84	57		-269	-237	-195	-161	-113	-81	-58	0,99094290	
91	60	-357,438901	-299	-266	-229	-201	-157	-121	-91	0,9610383	
92	48	-322,534758	-264	-230	-188	-157	-119	-95	-76	0,99283630	
96	62	-343,44295	-281	-247	-209	-180	-137	-102	-74	0,99388402	
103	51	-344,268427	-277	-241	-200	-172	-134	-105	-81	0,9915335	
102	90	-448,806079	-383	-347	-301	-265	-204	-153	-113	0,9927606	
72	56	-185,342192	-142	-113	-75	-47	-18	-6	-2	0,9641559	
90	56	-329,395497	-271	-240	-202	-175	-138	-109	-86	0,99610604	
81	64	-195,421674	-146	-114	-73	-45	-16	-6	-2	0,9763073	
83	74	-375,772488	-323	-292	-253	-222	-173	-134	-101	0,99919280	
84	77	-401,259247	-349	-318	-280	-251	-202	-161	-125	0,9872030	
89	52	-372,185345	-316	-283	-243	-213	-175	-147	-123	0,9834519	
101	75	-430,099958	-368	-329	-283	-249	-199	-160	-127	0,9962820	
91	79	-427,337156	-367	-336	-300	-273	-228	-189	-153	0,9887335	
92	58	-413,173528	-356	-321	-281	-253	-214	-181	-151	0,9543890	
98	71	-409.828551	-348	-312	-266	-230	-178	-139	-108	0,9921925	

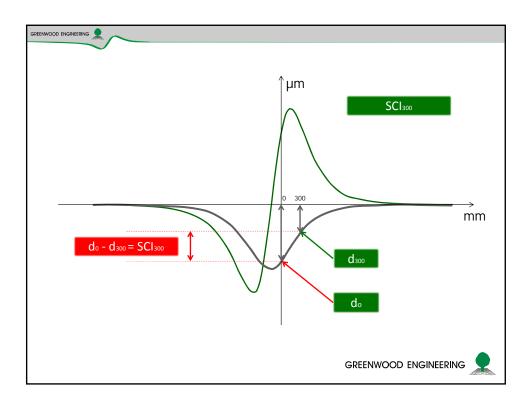


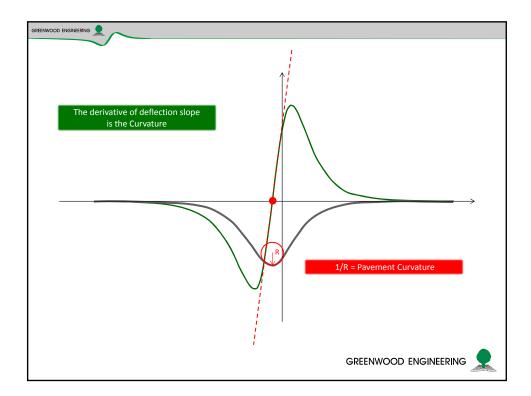


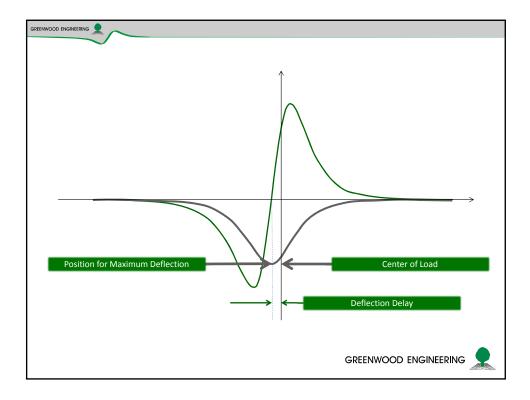












Update on UK and European TSD issues

TAC4 TRB2016 Washington DC

Brian Ferne, TRL

14 January 2016

Contents

- 1. DaRTS4
- 2. European Projects
 - 1. BeCATS
 - 2. HiSPEQ
- 3. UK Deflection design method

DaRTS4

- Fourth meeting of Deflection at Road Traffic
 Speed Group
- Meeting held
 - At BAM headquarters, Berlin
 - On 18 September 2015
- Attended by 12 'members' from
 - Denmark, Germany, France, Belgium
 - Spain, The Netherlands, the UK and Australia
- Plus 3 members on-line from Australia and the USA

Ρ	age ■ 3			<u>IS</u>

DaRTS4

New attendees:

- Professor J. Stefan Bald Technical University of Darmstadt
- Professor Hartmut Beckdahl University of Wuppertal
- Gregers Hildebrand COWI, Denmark representing HiSPEQ
- Steven Mookhoek TNO Infrastructure representing RWS

	DARTS4 AGENDA – PART 1	
	Updates from members on status of high-speed deflection devices (HSDD) and related projects	
	 Germany Dirk Jansen, BaST Professor. Beckdahl Professor Bald 	
	The Netherlands – RWS project – Steven Moorhoek	
	UK – Brian Ferne	
	Greenwood - Jorgen Krarup	
Page ■ 5		BL
		bast

DaRTS 4

Update from Germany on status of HSDD

Dr. Dirk Jansen

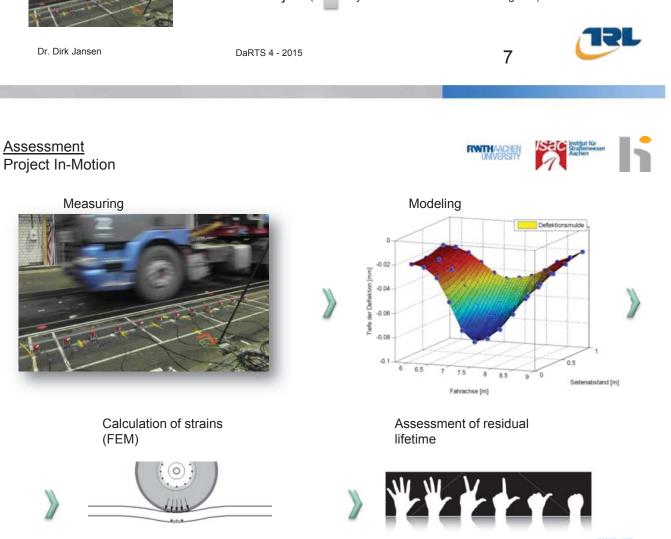
Bundesanstalt für Straßenwesen BASt Federal Highway Research Institute

TSD evaluation

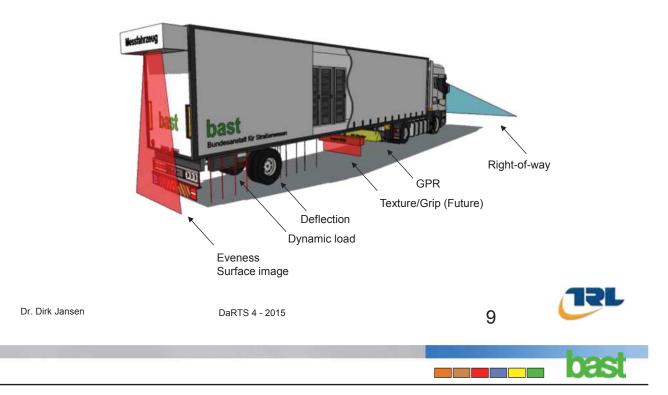
Project overview

1st generation TSD

- 2006: Measurements on BASt indoor test road
- 2008: Measurements on different in situ pavements


2nd generation TSD

- 2012: 300 km of measurements on different pavements
- 2014: 50 km comparative measurements on highway section
- 2015: Start of R&D project focus: repeatability
- 2016: Purchase of multifunctional TSD


Assessment procedures

In-Motion Project (RWTH by order of BASt 'Innovation Program')

BASt multifunctional TSD

MESAS – Multifunktionales Erfassungssystem zur Substanzbewertung und zum Aufbau von Straßen Multifunktional assessment tool for the structural evaluation and the design of pavements

Application for funding A Traffic Speed Deflectometer (TSD) in Germany German Research Foundation *Deutsche Forschungsgemeinschaft* (DFG)

Professor Beckdahl – University of Wuppertal

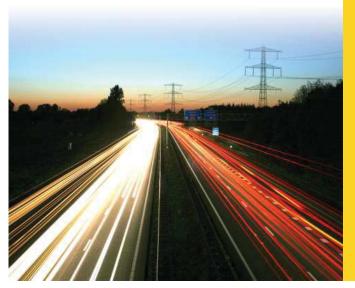
гецега підпімау кезеагон пізшице

The funding of Scientific Equipment is a part of the DFG's major research instrumentation programme

Purpose of Funding

- 1. The DFG funds large (expensive) scientific equipment.
- Financing is provided in equal parts by the DFG → F R GER and the university's home state (50% DFG, 40% NRW, 9% BESTLAB, 1% BUW).
- 3. Proposed research instrumentation project must be of high quality and national importance.
- 4. The instrumentation has to be used for research only and may also be used in teaching.

5th conference Transport Solutions: from Research to Deployment Innovate Mobility, Mobilise Innovation! Paris - La Défense CNIT, 14 - 17 April 2014


Evaluation of Load-Carrying Capacity of Asphalt Superstructures from Deflection Measurements

J. Stefan Bald, Prof. Dr.-Ing., Technische Universitaet Darmstadt, Germany

jsbald@sw.tu-darmstadt.de

Research Programme Replacement & Renovation Pavements

Steven Mookhoek (TNO)

Ministry of Infrastructure and Environment

The Netherlands

<u>188</u>

Introduction:

- Large fraction of the Dutch motorway network was constructed in 1960-1970s. Pavement area increased from 20% to 80% of its current area!
- Past philosophy: with right maintenance and reinforcement strategy life expectancy = indefinite...?!
- Information on BC only when large renovation 15-17 years is performed
- Identified risks:
 - Only limited information available of real effects of maintenance and used materials in last 50 years on bearing capacity/integrity of the road network
 - Limited information on culverts <1.5 m in diameter in the roads
 - Not traffic/climate changes taken into account on pavement and road design

Research Programme Replacement & Renovation Pavements 2016-2020

Aim

Risk assessment and R&R needs by 2020 of pavements on Dutch road network

- 2015 Set-up of Research Programme R&R pavements
- 2016 Determining data sources, suitable inspection and measurement methods
- 2017 Start inventory of pavement characteristics and gathering information through inspection and measurements
- 2018 Start analysis and recommendations replacements/renovations

Status on the UK use of the TSD

Brian Ferne, TRL

Current status of TRASS3

Current and planned surveys

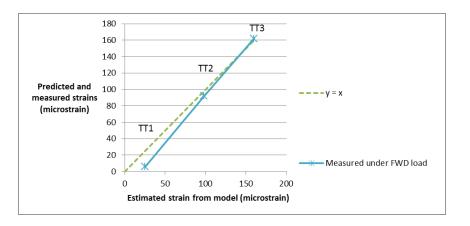
Main line Surveys	Slip road surveys	Outer lane surveys
 Around 6000 km in 2014 Around 6100 km in 2015 As yet no routine GPR Surveys will start in 2016 	 This required definition of deceleration limits 1 m/s/s limit embodied in validation software Around 2500km of slip roads covered so far in 	 Outer lane or passing/fast lane not generally used by heavy goods vehicles This required official procedure for surveying and permitting undertaking
 Some issues over data quality revealed by QA process 	2015/6 but 20% failed validation	 Interim Advice Note drafted No surveys yet except under police guidance

Page • 17

Current use of TSD data in the UK

Usage of TRASS data stored in PMS

Reducing other surveys	SMART motorways	Surfacing Schemes
 Deflection slopes converted to network structural condition categories 1 to 4 	 This mainly involves conversion of hard shoulder to part-time running lane 	 Central decision in England to resurface 80% of HE network Impossible for HE
 Categories used to guide scheme selection 	 TSD surveys can provide guidance on strengthening need or 	engineers to directly approve all proposals
 Categories used to guide type of further investigation 	strengthening need or otherwise	 Simplified approval process developed based on TSD structural condition
 Categories 1 and 2 suggest less need for slow speed disruptive investigations 		categories


Future of TSD in the UK

- Under the TRASS contract the HE TSD will restart network surveys in Spring 2016 following major maintenance of the TSD
- TRL is currently commissioned by HE to consider their strategy for future structural survey needs, i.e. the format of TRASS4 if required.
- o TRL will consider:
 - Worldwide developments in HSDDs
 - Recent TRL research with the TSD including
 Comparative trials of 1st and 2nd generation TSDs
 - Experience with TRASS 1, 2 and 3 survey contracts

Page = 19

Future of deflection interpretation in the UK? Estimation of strains from deflection Measurement in test sections

Future of deflection interpretation in the UK? Estimation of strains from deflection Prediction from FWD bowls 180 ттз 160 140 TT2 120 **-** - y = x Predicted and 100 measured strains 80 (microstrain) 60 Predicted from FWD TT1 measurements 40

100

Estimated strain from model (microstrain)

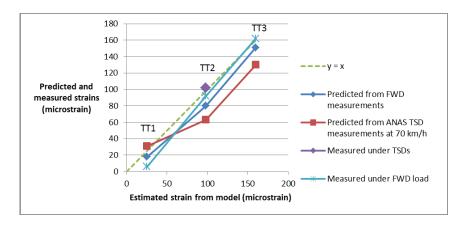
50

150

200

20

0


0

Measured under FWD load

Page = 21

Future of deflection interpretation in the UK? Estimation of strains from deflection Prediction from TSD bowls

DARTS4 AGENDA – PART 2

Update on relevant European Groups and Projects including:

- BeCaTS Brian Ferne on behalf of Adam Zofka
- HiSPEQ Gregers Hildebrand
- Discussion
 - Comparison between deflection devices
 - Standardisation of deflection terms

Page = 23

HI-SPEQ – European project sponsored by CEDR

- Hi-speed survey SPecifications, Explanation and Quality
- Commissioned under the CEDR Ageing Infrastructure Management Call – High-speed non-destructive Condition Assessment. Managed by Ireland National Roads Authority
- 6 project partners (TRL, AIT, VTI, ZAG, COWI, Fugro). Start date 14th April 2014, Duration: 24 months. Led by TRL.
- HI-SPEQ will draw on a Reference Group of road owners & operators, survey equipment builders & users, Data users, researchers etc.

Requirements for a highspeed deflection device

Gregers Hildebrand, COWI, Denmark grhi@cowi.dk

25 18 SEPTEMBER 2015 DARTS MEETING BERLIN

Today's message

HiSPEQ aims at providing **guidance** to NRAs that will tender pavement condition testing. We will help the NRAs **understand** and **specify survey requirements, quality regimes and processing procedures**.

And Andrew

HiSPEQ focuses on **high-speed** testing devices and data for Pavement/Asset Management.

Today, focus is on the TSD.

Templates for measurement and equipment specs

- > Two sets of templates:
 - > Specification for testing
 - > Equipment
 - Guidance documents for both templates

27 18 SEPTEMBER 2015 DARTS MEETING BERLIN

Testing specification templates

- > HiSPEQ1: Specification for pavement condition measurement
- > HiSPEQ2: Specification for referencing data to the network
- > HiSPEQ3: Specification for pavement transverse evenness measurement
- > HiSPEQ4: Specification for longitudinal unevenness measurement
- > HiSPEQ5: Specification for pavement surface deterioration measurement
- > HiSPEQ6: Specification for pavement structure measurement
- > HiSPEQ7: Specification for traffic speed pavement deflection surveys

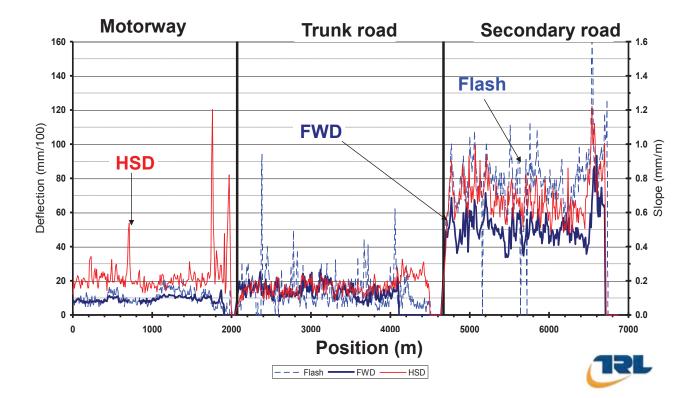
Equipment specification templates

- > HiSPEQ2E: Equipment for location and network referencing
- > HiSPEQ3E: Equipment for measurement of pavement transverse evenness
- > HiSPEQ4E: Equipment for measurement of pavement longitudinal unevenness
- > HiSPEQ5E: Equipment for pavement surface deterioration measurement
- > HiSPEQ6E: Equipment for pavement layer measurement
- > HiSPEQ7E: Equipment for pavement deflection measurement

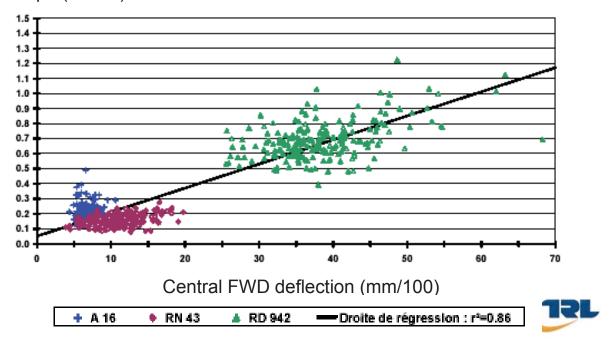
Conclusions

We are in the process of producing guidelines to help NRAs – and others specify and hence tender TSD and other pavement tests.

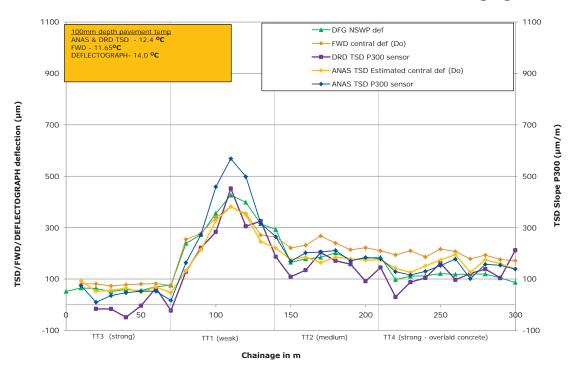
We still need work on


- > Parameters data processing, combined use of TSD and GPR et al.
- > Accreditation
- > Quality assurance

www.hispeq.com

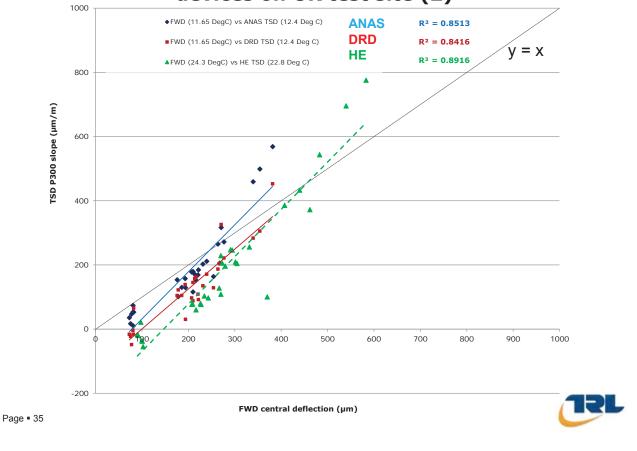


Comparison between HSD, Flash and FWD on three sites in France

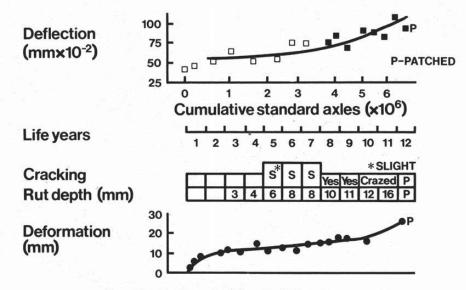


Correlation between HSD and FWD on three sites in France

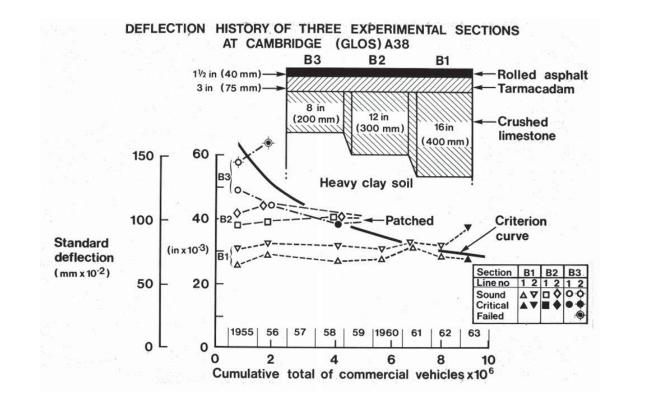
HSD slope (mm/m)



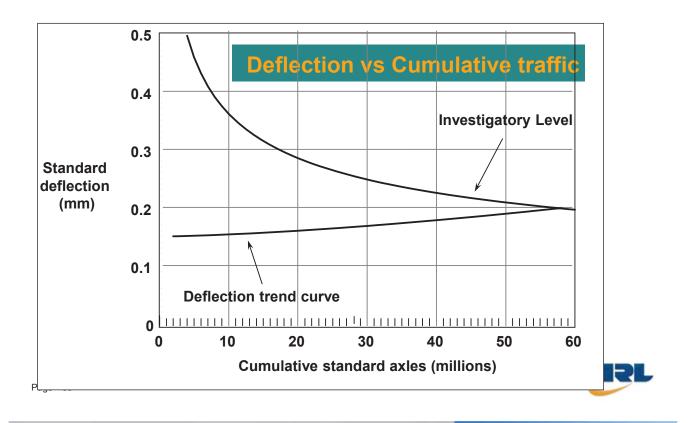
Comparisons between deflections measured by different devices on UK test site (1)

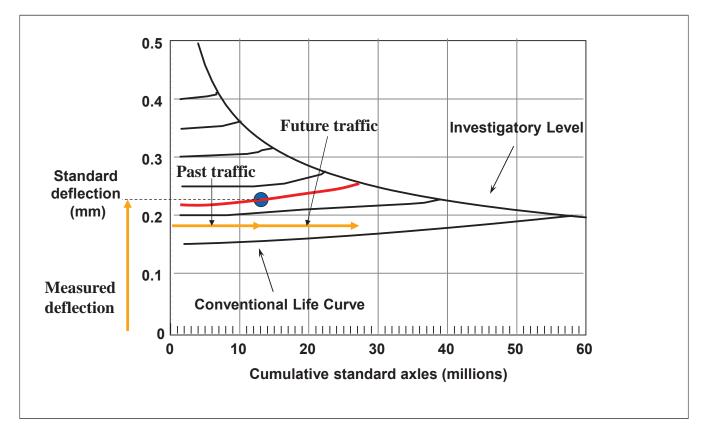

Comparisons between deflections measured by different devices on UK test site (2)

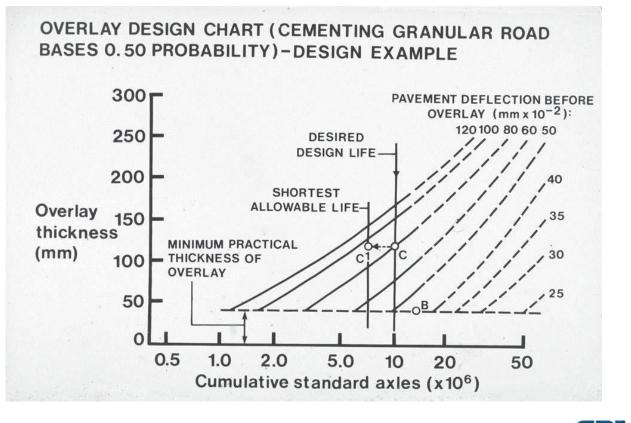
Development of the UK Deflection Design Method And its use with the TSD


COMPARISON OF DEFLECTION HISTORY, VISUAL CONDITION, AND PERMANENT DEFORMATION BEHAVIOUR

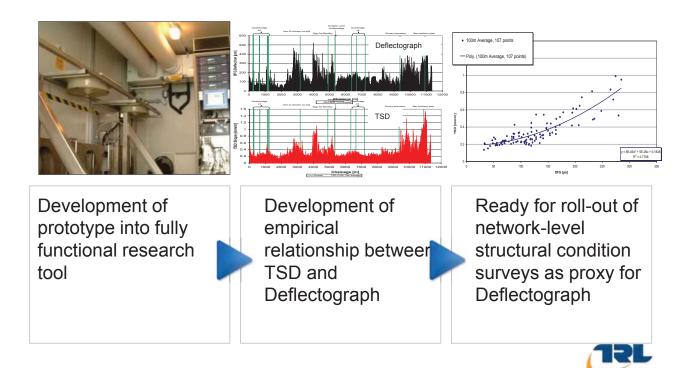
Section with rolled asphalt base

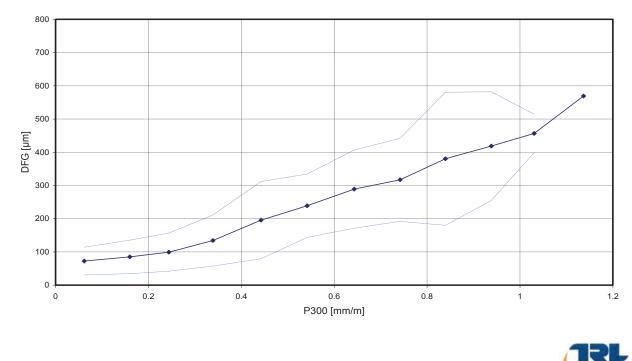

Page • 37





Interpretation of deflection data in UK - example

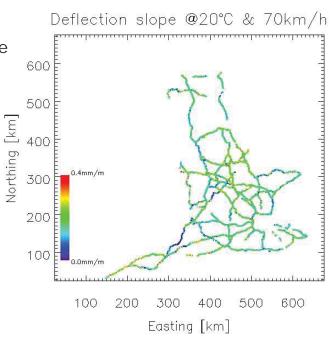




Page • 41

TEL

TSD Development 2006-2009

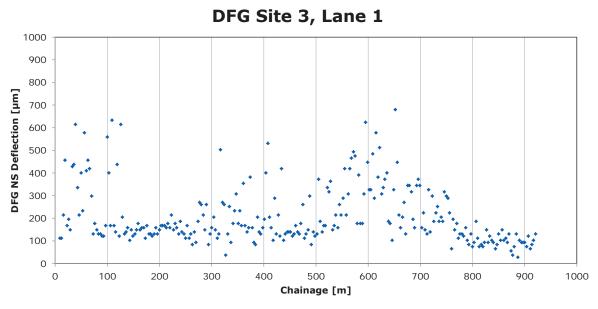


Comparison with other deflection devices - Sensor P300 v. Deflectograph

Page = 43

TRASS1&2 Summary

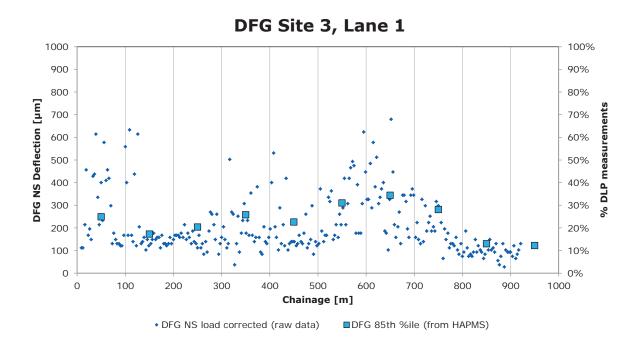
- The HA TSD was successfully developed into a system capable of delivering routine network level surveys
- Over 18000km of structural condition information was collected by TRASS1 and TRASS2
- Robust QA regime established
- HA Managing Agents could be provided with indicator of network level structural condition.....

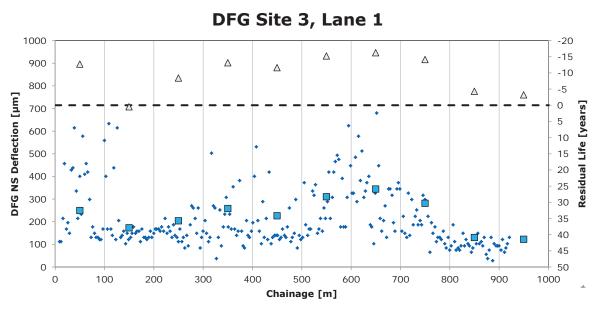

TSD Network Structural Condition categories

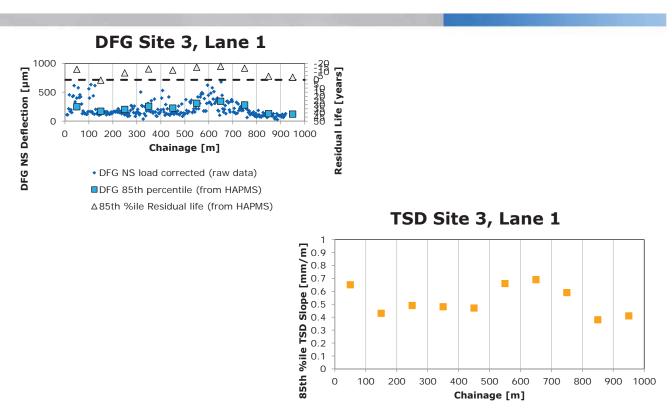
Category	Description
1	Flexible pavements without any need for structural maintenance
2	Flexible pavements unlikely to need structural maintenance
3	Flexible pavements likely to need structural maintenance
4	Flexible pavements very likely to need structural maintenance

- If all the NSC categories for a scheme are 1 or 2 then a Deflectograph survey is only required if there is clear additional evidence of structural deterioration (eg longitudinal wheel-track cracking, pumping or settlement).
- If a scheme has no TSD data or has any length in NSC categories of 3 or 4 then a Deflectograph survey is required for the whole scheme

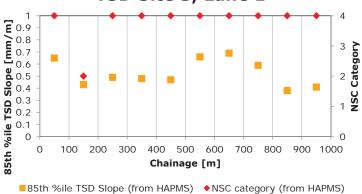
Page • 45


Examples from site surveys


[•] DFG NS load corrected (raw data)



• DFG NS load corrected (raw data) ■DFG 85th percentile (from HAPMS) △85th %ile Residual life (from HAPMS)



DFG Site 3, Lane 1 1000 Δ DFG NS Deflection [µm] Δ \triangle Residual Life [years] Δ \wedge Λ Δ 500 0 100 200 300 400 500 600 700 800 900 1000 0 Chainage [m] • DFG NS load corrected (raw data) DFG 85th percentile (from HAPMS) △85th %ile Residual life (from HAPMS) TSD Site 3, Lane 1 1

1a) restore adequate levels of skid resistance and macro texture - accide the whole length is surface dressed	nt report available (currently			0,0	-		10.	11	11	Y	A 4	11:	30	\sim	2	0	+	-		TT
1b) maintain long-life pavement/upgrade carriageway to long-life status				1	0	1 HF			-	-	Concession of the			-	5		1	1	4	002
1c) use of thin surfacing material to reduce noise levels (estimated 45 properties affected) - failing surface dressing				2	12	1	3.	an	or	-	1	T	1	20	- ha	1	(interest	1	CO	my
Plane off 30mm - replace to existing level (maintain as LLP)	2. Proposed	Maintenance	L1	HH						-				• •	• •	- i			— 1	i
Plane off 40mm - replace with 65mm bituminous material (Upgrade to L	(P)		L2	HH	╶╂╢╌	HH				H			60				_	+	+	
Plane off 40mm - replace with 100mm bituminous material (Upgrade to							-			-										
Plane off 75mm - replace with 135mm bituminous material (Upgrade to I		Distance (km)	0	0.1	0.2 0	.3 0.4	4 0.5	0.6	0.7	0.8	0.9	1 1.	1 1.2	1.3	1.4	1.5	1.6 1	.7 1.8	8 1.9	2 2.1
3a) GPR Survey undertaken July 2000 (report available)	3. Construct	ion / Traffic Details																		
3b) 15 cores taken in May 2000 to determine construction	(from cores and r	adar survev)	L1	275mm b	ituminous ma	terial on 22	0mm Type 1	I granular	on clay sul	bgrade	240mm bitur		rial on 220m v suborade	nm Type 1	granular	310mm bit	uminous ma	iterial on 220 suborad		granular on clay
3c) Whole length currently surface dressed 3d) TTBM shown is the same for both wheelpaths. Separate construction lengths would be needed if the TTBM changes in either wheelpath 3e) Base type is from CONFIRM	Base Type/Traffic	used in deflection analysis	L2		BITS	oase type 1. Date: 1983		SINCE TAD		-		on cla S base type : 1983 Tr	ттвм		a		BITS base T A D : 198	type	oe TTBM = 31i since TAD: (
	4. Deflectog	raph - Lane 1																		
4a) Deflectograph Survey undertaken May 2000, Category 1A 4b) Traffic flows used in the deflection analysis	No. of deflection			32	32 3			32	31	32		2 31	28	32	31		30 21		32	32 31
Year: 1999 Commercial Vehicle Flow: 5,000vpd (one wa	LLP (% of values) ULL P (% of value)	classified as LLP) s classified as ULLP)		0% 95%	0% 09 90% 85		0% 80%	0% 90%	0% 73%	0% 70%	0% 0 68% 60		0%	0% 75%	0% 75%		95% 100 0% 09		100%	100% 100% 0% 0%
Year: 2012 Commercial Vehicle Flow: 7,150vpd (one wa		classified as DLP)			10% 15			10%	17%		32% 40			25%	25%		5% 0%		0%	0% 0%
_		on (mm) (temperature corrected)			0.178 0.1			0.179			0.212 0.2			0.268	0.254		.175 0.1			0.149 0.168
= residual life <0 years		life (ULLP & DLP) (years) for 20 years life (85 %ile)		3.7 40	1.7 1. 40 41			1.6 40	-0.4 40	-0.6 40		.0 -1.8 0 40		-4.5 40	-4.0 40		>20 >2		>20	>20 >20
5a) Survey undertaken July 2001	5. TRACS - I											_		<u> </u>						
5b) Ride quality and crack intensity categories (from IAN 33/01)	Rut depth - avera			10	7 8	-	9	8	9	7	9		10	8	8	-	5 6	-	8	4 5
1 = sound	Rut depth - max v			14	11 8	-	9	9	10	8	10 1		15	10	9	-	9 7	-	10	7 6
2= some distress 3 = warning level	Texture depth - m Ride Quality Cate	ean (mm) gory - 3m Variance		0.5	0.5 0. 2 2		0.5	0.6	0.6	0.5	0.5 0	5 0.7	0.5	0.8	0.5	0.8	0.5 0.		0.6	0.5 0.6 2 1
4 = Intervention level		Ride Quality Category - 10m Variance			1 1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1 1
= maximum rut >11mm, texture <1.1mm, ride quality category >2,		gory - 30m Variance		1	1 1	2	2	1	2	2	1	1	1	1	1	1	1 1	1	1	1 1
cracking intensity >2 (NB. Apply to TRACS data only)	Lane Cracking In	ensity Category		1	1 1	1	2	2	2	2	1	1	2	3	1	1	1 1	1	1	1 1
6a) Survey undertaken 2001 (Note if not consistent)	6. SCRIM - L	ane 1																		
	Survey category			1	1 1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1 1
SCRIM deficiency or value at investigatory level	MSSC			0.33	0.33 0.3			0.31	0.36		0.35 0.			0.32	0.34		0.41 0.2			0.28 0.41 0.35 0.35
	Investigatory leve Deficiency	1			0.02 0.1			0.35			0.00 0.			0.35	0.35		ione 0.0			0.35 0.35 0.07 none
7a) Visual Condition Survey undertaken May 1999 (report available)		ndition - Lane 1		_																
# = not measured	Chip loss Fatting up			2	3 2	2	2	2	2	3	2 :	2 3	2	2	3	2	3 3	3	3	2 2
1 = some	Cracking - transv	erse		1	1 0		2	2	2	1	1		2	0	1		0 0		0	0 0
2 = moderate	Cracking - wheelt			0	0 0		1	0	0	0	0	0 0	0	0	1	0	1 0		0	0 0
3 = excessive	Failed patching			0	0 0	1	1	0	0	0	0	0	0	0	1	0	1 0	1	0	0 0
visual condition category >1 8a) 15 cores taken through cracks in lane 1. May 1999 (report available)	8. Cores (cra Cracks confined 1	ack-depth survey) - Lane	91				-						-			≣(0)]	E(1) E(D) (1)	(0) ≣	≡(0) ≡(0)
It (1) = depth assumed and number of cores taken within 100m section	Cracks confined t	o top 40mm		≣(1)	≡(0) ≡(D)	≣(2)	≣(2)	≣(1)	≣(1)	≣(1) ≣	0) (1)		≣(1)	≣(1)	=(0)	s(4) ≡(// ≡(1)	=(0)	=(0) =(0)
	Cracks confined t											7			- ()					
	Depth of cracking	(if >100mm)																	<u> </u>	
Scheme No. 2002/14	DRG No. EX-001-2002/4130	Condition Information to			posed	-					Ith January anuary 2003		\ \	/ERIT	ENG	INEER	NG CC	NSULT	TANTS	LIMITED
Scheme Name: A4130 Bix to Lower Assendon (E	В)	Maintenance	Wor	ks									sion of He	er Majest	y's Static	nery Offic	e Crown C	opyright L	icence No	GD 272663
				_	_	_	_		_	_	_	_	_	_	_	_	_			
	Figure I	D1. Example	pro	eser	itati	ion	of	pro	oje	ct (deta	ils								

L1

L2

0

L1

L2

0.1

0.2

0.3

0.4

accident report available (currently

tatus

45

2. Proposed Maintenance

le to LLP) ide to LLP) de to LLP) Distance (km)

3. Construction / Traffic Details

(from cores and radar survey) uction Base Type/Traffic used in deflection analysis

lpath

4. Deflectograph - Lane 1

No. of deflection pairs

LLP (% of values classified as LLP) ULLP (% of values classified as ULLP) ULLP (% of values classified as ULLP) DLP (% of values classified as DLP) 85th %ile deflection (mm) (temperature corrected) 15th %ile residual life (ULLP & DLP) (years) Overlay thickness for 20 years life (85 %ile)

5. TRACS - Lane 1

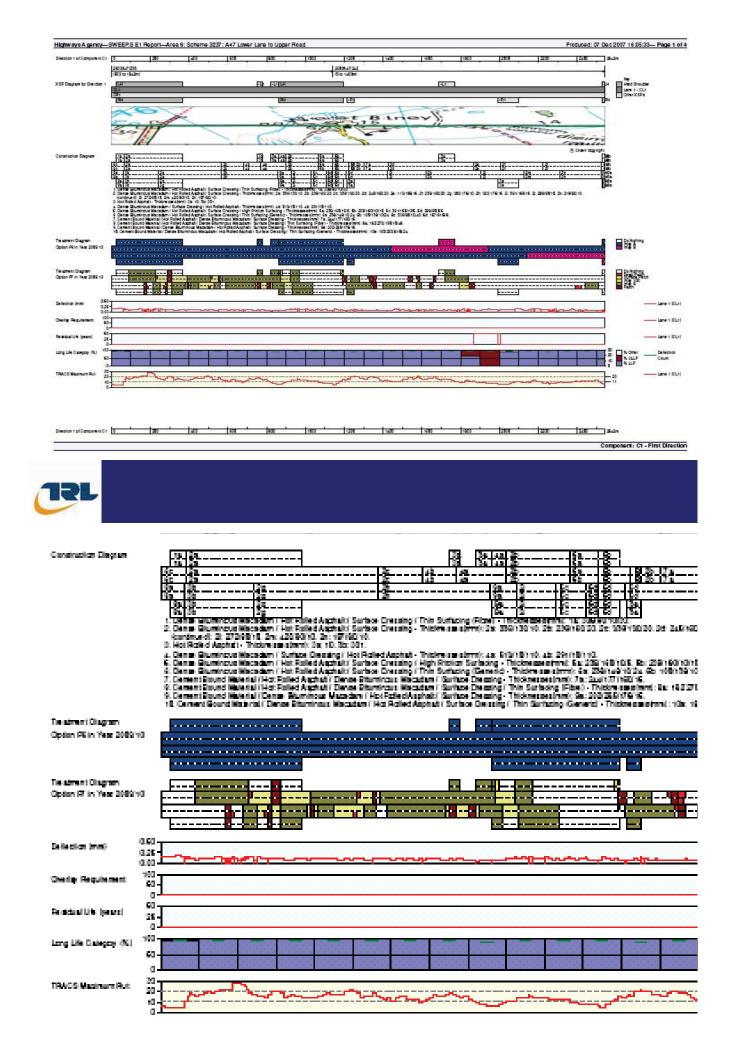
Rut depth - average (mm) Rut depth - max value (mm) Texture depth - mean (mm) Ride Quality Category - 3m Variance Ride Quality Category - 10m Variance Ride Quality Category - 30m Variance Lane Cracking Intensity Category

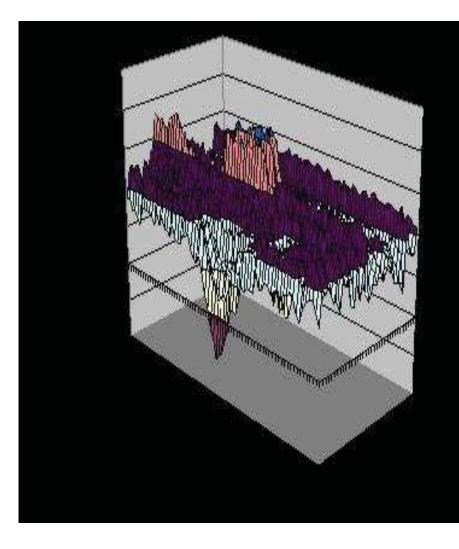
	275mm bituminous material on 220mm Type 1 granular on clay subgrade	240mm bituminous m
	BITS base type TTBM = 275mm	BITS base t
2	Traffic Accum. Date: 1983 Traffic since TAD: 60msa	T A D : 1983

0.6

0.7

0.8


0.9


1

0.5

										_
32	32	31	32	32	32	31	32	30	32	
0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	(
95%	90%	85%	85%	80%	90%	73%	70%	68%	60%	6
5%	10%	15%	15%	20%	10%	17%	30%	32%	40%	3
0.164	0.178	0.183	0.180	0.189	0.179	0.198	0.200	0.212	0.234	0.
3.7	1.7	1.1	1.5	0.5	1.6	-0.4	-0.6	-1.5	-3.0	-
40	40	40	40	40	40	40	40	40	40	

10	7	8	8	9	8	9	7	9	9	
14	11	8	9	9	9	10	8	10	11	
0.5	0.5	0.6	0.5	0.5	0.6	0.6	0.5	0.5	0.5	
2	2	2	2	2	2	3	2	2	2	
1	1	1	1	1	1	1	1	1	1	Γ
1	1	1	2	2	1	2	2	1	1	Γ
1	1	1	1	2	2	2	2	1	1	

Thank your for listening!

bferne@trl.co.uk