Department of Civil, Environmental, and Geo- Engineering

TPF(5)-169, Development of an Improved Design Procedure for Unbonded Concrete Overlays

Task 4. Cracking Models

Prof. Lev Khazanovich

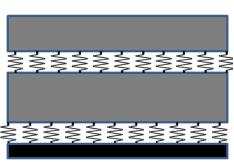
Cracking Model development

University of Minnesota

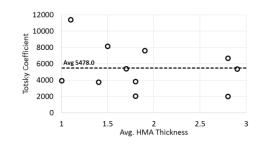
• 6x6 slabs

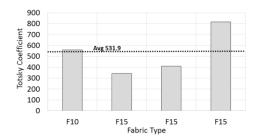
- Develop Neural Networks
- Climate characterization
- Damage modeling- MEPDG cracking model with adjusted strength, if necessary
- Model validation

Task 4, Investigations (1)


• <u>Interlayer analysis</u>: Validated Task 3 Totsky

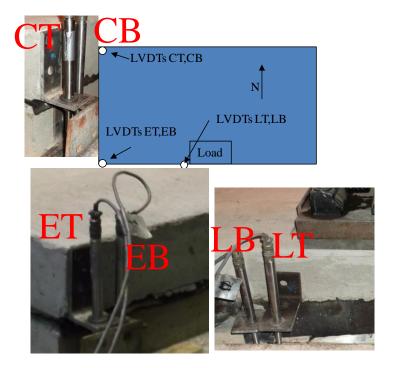
Confirmed k_totsky for HMA and Fabric


- <u>Mesh and interlayer values</u>: Effect of mesh refinement and interlayer k-value on stress at critical location
 - 18-kip load + no thermal load and no axle load + thermal load
- <u>Existing crack</u>: Batch runs for 1L undamaged system of varied slab thickness and 2L with existing crack
 - Assumes 18 kip load, no thermal load in 6x6 and 12x15
 - 6-on-6 performs equivalently to ~6.6" either with or without crack


Totsky approach for interlayer modeling

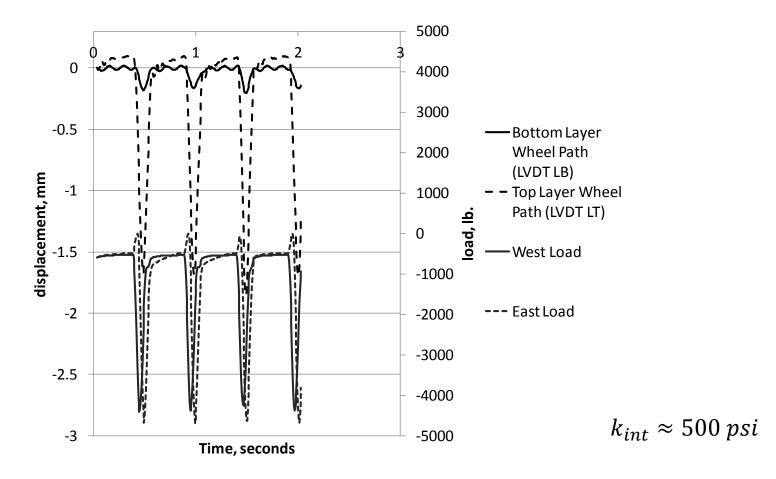
- Totsky approach models "cushioning" property of the interlayer using springs
- Estimate Totsky coefficients for HMA and fabric interlayers from lab data
- Investigate 2-layer system with varied k_tot *versus* 1-layer system with varied k_sub


UNIVERSITY



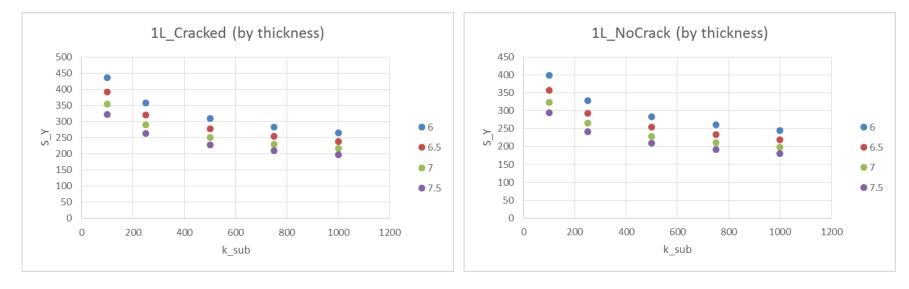
MinneALF

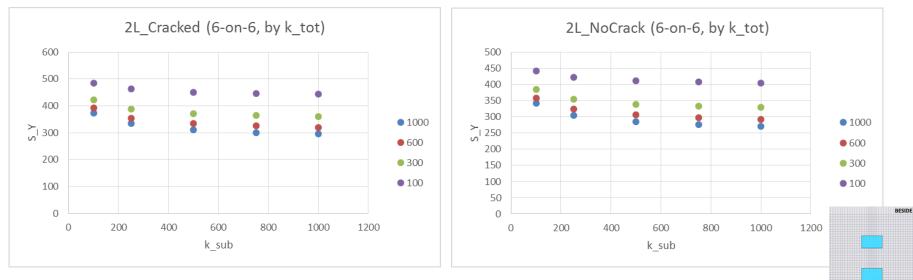
University of Minnesota



UBOL, Task 4, 20 Dec 2016

MinneALF

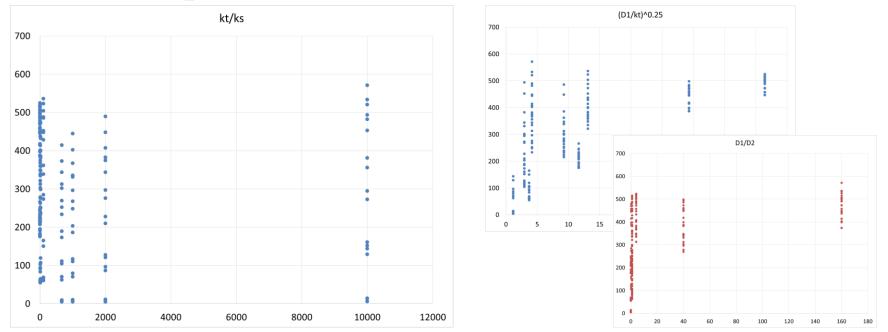

University of Minnesota



After 4 million load repetitions

Task 4, 1L/2L equivalent w cracking

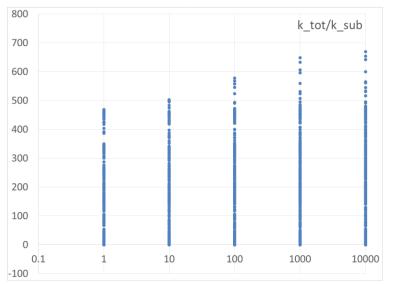
University of Minnesota

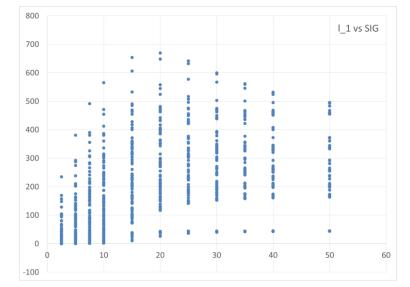


UBOL, Task 4, 20 Dec 2016

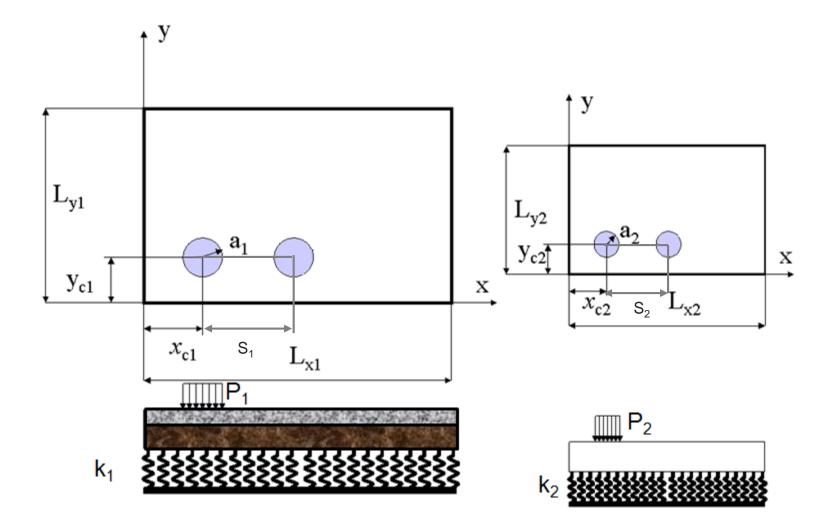
Task 4, Investigations (2)

• <u>6x6 stress response</u>: Factorial of 216 cases varied by D1/D2, kt/ks, (D1/kt)^0.25 for stress response of 6x6, 2L system


-18-kip load, no thermal, 6-on-10 inch system

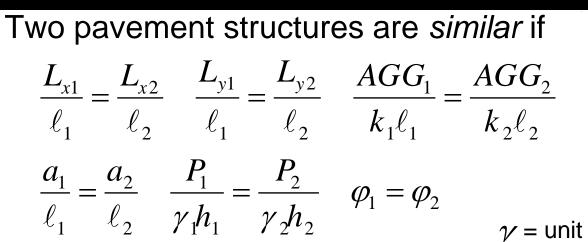

UBOL, Task 4, 20 Dec 2016

Task 4, Investigations (3)


- <u>6x6 stress response</u>: Factorial of 1650 cases varied by D1/D2, kt/ks, (D1/kt)^0.25 for response of 6x6, 2L system
 - -18-kip load, no thermal, 6-on-8 inch system

UBOL, Task 4, 20 Dec 2016

Similarity Concept



Similarity Concept

University of Minnesota Driven to Discover™

> L_{y2} y_{c2}

х

$$\varphi = \frac{2\alpha(1+\mu)\ell^2}{h^2} \frac{k}{\gamma} \Delta T$$

$$\Delta T = h \frac{\int (T(z) - T_0) E(z) z \, dz}{\int E(z) \, z^2 \, dz}$$

h

and

$$\sigma_2 = \frac{h_1 \gamma_2 \ell_2^2}{h_2 \gamma_1 \ell_1^2} \sigma_1 + \Delta \sigma_{NLT}$$

 $\begin{array}{c|c} y_{c1} \\ \hline \\ x_{c1} \\ \hline \\ x_{c2} \\ \hline x_{c2} \\ \hline \\ x_{c2} \\ \hline x_{c2} \\ \hline \\ x_{c2} \\ \hline x_{c2} \\ \hline x_{c2} \\ \hline x_{c2} \\ \hline x_{c2} \\$

 γ = unit weight

 L_{v1}

Korenev's (1962) nondimensional temperature gradient

Temperature difference for the linear strain component of the temperature distribution

(Khazanovich et al. 2001)

University of Minnesota Driven to Discover™

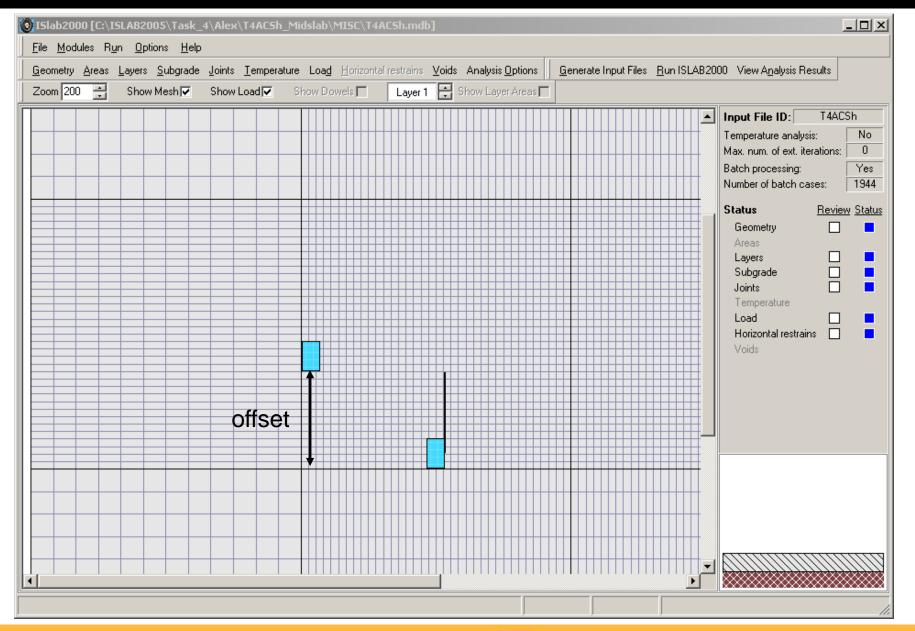
Factorial

Case	Slab	Elastic	Transverse	Lane/Shoulder	Axle	
	size, ft	Modulus,	Joint LTE,		Reference	
		psi	%		Point	
		-			Transve	erse
					Position*	
					a. dual	
					wheel	single
					l	wheel
1	5 x 5	100,000	25	20	+0	+0
2	6 x 6	200,000	35	35	+4	+4
3	7 x 7	350,000	45	50	+6	+6
4	8 x 8	600,000	55		+8	+8
5		1,000,000	65		+10	+10
6		1,500,000	75		+12	+12
7		2,200,000	85		+14	+14
8		3,100,000	95		+16	+16
9		4,300,000			+18	+18
10		5,800,000			+20	+20
11		7,600,000			+22	+22
12		10,000,000			+24	+24
13		12,500,000			+28	+28
14		15,750,000			+32	+32
15		21,700,000			+36	+36
16		28,200,000			+40	+40
17		38,500,000			+44	+44
18		50,000,000				+48
19		63,500,000				+56
20		80,000,000				+60
21		100,000,000				+64
22		122,000,000				
23		168,000,000				
24		225,000,000				

UBOL, Task 4, 20 Dec 2016

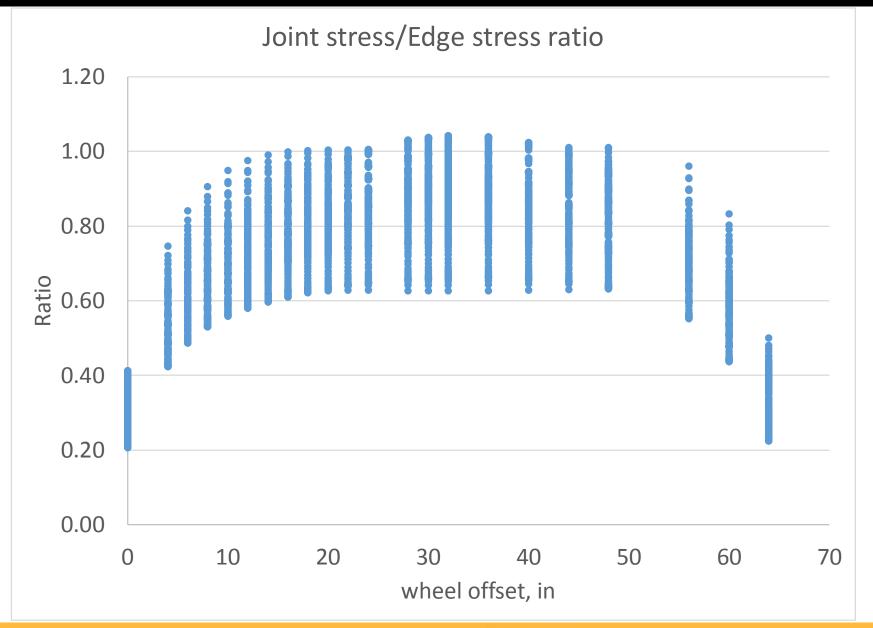
Task 4, Building database of responses

University of Minnesota


• Stress response in slab according to EPCC, offset, joint LTE for 4500+ cases

📔 C:\ISLAB2005\Tasl	_4\Alex\T4AC5h_Midslab\AC5h_Midslab_Table.csv - Notepad++	<u>- 🗆 ×</u>
File Edit Search View	v Encoding Language Settings Macro Run Plugins Window ?	X
	, _ / / in in > c = 🖕 < < 🖕 = = 1 # @ = = = =	
😑 ACSh_Midslab_Table.	SW 🛛	
1 EPCC,LTE,Of	tset, S_Y @ 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72	_
2 100000,25,0	,298.287,281.0786,259.4617,227.4559,181.714,135.02,100.4117,75.2943,56.5704,42.423,31.6531,23.4331,17.1637,12.3991,8.7991,6.1016,4.1024,2.6404,1.5888,0.8481,0.3404,0.005,-0.2053,-0	J. 3267 📕
3 100000,25,4	,156.4935,167.0099,189.4107,209.6604,212.0615,195.512,160.0983,120.4835,90.7946,69.1108,52.7778,40.2799,30.6279,23.1456,17.3429,12.8533,9.3959,6.7505,4.7429,3.2349,2.1163,1.299,0.7	/133,0
4 100000,25,6	,117.225,126.2055,143.9562,172.61,197.5002,203.3349,189.3065,155.7425,117.4787,88.7709,67.7942,51.9645,39.8184,30.4076,23.085,17.3834,12.9536,9.5262,6.8904,4.8792,3.3596,2.2251,1.3	3904,0
5 100000,25,8	.88.736,96.5051,109.8225,131.5646,163.3583,190.6739,198.3505,185.7114,153.1862,115.6933,87.5536,66.9905,51.4576,39.5219,30.2562,23.0311,17.3927,13.0007,9.5929,6.9644,4.9526,3.4276,	,2.285.
6 100000,25,1),67.5057,74.2174,84.6814,100.6118,124.5031,158.0165,186.6765,195.3925,183.5478,151.6246,114.5849,86.7827,66.4682,51.1169,39.3113,30.1375,22.9762,17.38,13.0142,9.6215,7.0005,4.991,	,3.465:
7 100000,25,1	2,51.4074,57.1946,65.6034,77.7957,95.2037,120.3148,154.8074,184.2426,193.5636,182.1869,150.6238,113.8585,86.2636,66.1052,50.8698,39.1496,30.0384,22.9215,17.3559,13.0105,9.6312,7.01	.84,5.1
8 100000,25,1	4,39.0744,44.0421,50.8872,60.4367,73.6418,91.9119,117.7331,152.8013,182.6953,192.379,181.2875,149.9472,113.3545,85.8936,65.838,50.6813,39.0214,29.9554,22.8716,17.3302,13.0024,9.635	\$6,7.0
9 100000,25,1	5,29,5704,33.8125,39.4169,47.0034,57.2395,71.0483,89.8295,116.0756,151.4901,181.6641,191.5734,180.6627,149.466,112.9883,85.6185,65.6351,50.5359,38.9208,29.8893,22.8321,17.3111,12.5	1992,9
10 100000,25,1	3,22.2275,25.8297,30.4264,36.4971,44.5392,55.1917,69.3643,88.4565,114.9624,150.5923,180.9444,191.0003,180.2093,149.1114,112.7143,85.4103,65.4812,50.4258,38.8457,29.8422,22.8075,17.	.3048,.
11 100000,25,2),16.4069,19.4457,23.2083,28.0761,34.4337,42.7546,53.6653,68.0727,87.3764,114.0738,149.8767,180.3836,190.5768,179.9068,148.9126,112.6017,85.3674,65.4922,50.4773,38.9276,29.9457,22.	9249,.
12 100000,25,2	2,12.0321,14.5821,17.6571,21.5638,26.6071,33.1497,41.6498,52.727,67.2853,86.7231,113.5368,149.4393,180.0311,190.2959,179.6852,148.7393,112.4685,85.2677,65.4207,50.4308,38.902,29.93	376,22
13 100000,25,2	4,8.6721,10.799,13.3027,16.4319,20.4325,25.5898,32.2521,40.8702,52.0594,66.7212,86.2514,113.1465,149.1201,179.7733,190.09,179.5226,148.6135,112.3742,85.2007,65.3787,50.4103,38.9,25	1.9532
14 100000,25,2	3,4.1622,5.6153,7.2508,9.2351,11.7318,14.9262,19.0353,24.324,31.1279,39.8892,51.2161,66.0055,85.652,112.6519,148.7179,179.451,189.837,179.3307,148.4765,112.2879,85.1615,65.3818,50.	4533,
15 100000,25,3),2.7037,3.8937,5.2043,6.7716,8.7298,11.23,14.4473,18.5917,23.9231,30.7734,39.5808,50.952,65.7831,85.4684,112.5029,148.5995,179.3604,189.7721,179.2902,148.46,112.2941,85.189,65.431	.2,50.
16 100000,25,3	2,1.6233,2.5918,3.6353,4.8649,6.3907,8.3364,10.844,14.0822,18.2564,23.623,30.5098,39.3532,50.7594,65.6237,85.3392,112.4008,148.5227,179.3077,189.7427,179.2846,148.4774,112.3338,85.	.2521,
17 100000,25,3	5,0.2744,0.9036,1.5512,2.2901,3.194,4.3453,5.8385,7.7845,10.3161,13.5944,17.8177,23.2369,30.1775,39.0744,50.5319,65.4437,85.2042,112.3099,148.476,179.3069,189.7895,179.3793,148.622	23,112
18 100000,25,4),-0.3732,0.0248,0.414,0.8413,1.3545,2.0082,2.8648,3.9976,5.494,7.4589,10.019,13.3306,17.5902,23.0473,30.0258,38.9593,50.453,65.4025,85.2031,112.3531,148.5675,179.4496,189.9883,175	1.6402
19 100000,25,4	4,-0.6232,-0.3784,-0.153,0.0822,0.3576,0.7079,1.1739,1.8034,2.6539,3.7942,5.3066,7.2923,9.8764,13.2146,17.5018,22.9865,29.9937,38.9591,50.4889,65.4807,85.3298,112.5336,148.8096,175	1.7627
20 100000,25,4	3,0.0122,0.2393,0.5568,1.0015,1.618,2.4608,3.5969,5.1086,7.0974,9.6888,13.0391,17.3447,22.8564,29.8999,38.9118,50.4993,65.5605,85.4927,112.7958,149.1874,180.275,191.0509,180.9744,1	.50.59
21 100000,25,5	5,-0.3676,-0.3386,-0.2886,-0.2043,-0.0687,0.14,0.449,0.8926,1.5137,2.3659,3.5154,5.0447,7.0562,9.6773,13.0669,17.4259,23.0104,30.1541,39.3035,51.0776,66.3922,86.6677,114.4322,151.4	42,18:
22 100000,25,6),-0.3444,-0.3463,-0.3422,-0.3253,-0.2862,-0.2125,-0.0882,0.1075,0.4013,0.8268,1.4268,2.2552,3.3791,4.8829,6.8719,9.4777,12.8664,17.2479,22.8915,30.1478,39.4889,51.5697,67.3512,88.	3167,.
23 100000,25,6	4,-0.2707,-0.2836,-0.2992,-0.3152,-0.3279,-0.3317,-0.3188,-0.2782,-0.1953,-0.0504,0.1822,0.5361,1.0546,1.7933,2.8232,4.2347,6.1428,8.694,12.0747,16.5243,22.3554,29.9815,39.9595,53.	.0671,
24 100000,35,0	,298.2294,281.0046,259.3718,227.3509,181.595,134.8884,100.2689,75.142,56.4105,42.2575,31.4841,23.2626,16.9936,12.2314,8.6356,5.9437,3.9516,2.4979,1.4555,0.7247,0.2274,-0.0974,-0.25	/69,-0
25 100000,35,4	,156.3978,166.9047,189.2969,209.5388,211.933,195.3776,159.9589,120.3403,90.6489,68.9635,52.6302,40.1332,30.4831,23.0038,17.2051,12.7203,9.2686,6.6295,4.6288,3.1281,2.0171,1.2078,0.	63,0.:
26 100000,35,6	,117.1131,126.0872,143.8323,172.4813,197.3676,203.1992,189.1686,155.6033,117.3389,88.6315,67.6559,51.8279,39.6845,30.277,22.9583,17.2611,12.8363,9.4144,6.7845,4.7794,3.2663,2.1384,	,1.310
27 100000,35,8	.88.6105,96.3756,109.6901,131.4301,163.2225,190.5375,198.2142,185.5758,153.0519,115.5608,87.4234,66.8631,51.3333,39.401,30.1392,22.9183,17.2843,12.8969,9.4941,6.8707,4.8642,3.3446,	,2.207:
28 100000,35,1),67.3693,74.0791,84.5424,100.473,124.365,157.8799,186.5419,195.2604,183.4185,151.4984,114.4619,86.6632,66.3522,51.0046,39.2027,30.0328,22.8753,17.2831,12.9214,9.5329,6.9162,4.9112	:,3.39
29 100000,35,1	2,51.263,57.05,65.4598,77.6539,95.0645,120.1787,154.6749,184.1138,193.4388,182.0662,150.5071,113.7458,86.1548,66.0002,50.7684,39.0517,29.944,22.8304,17.2681,12.9262,9.5503,6.941,4.	9401,:
30 100000,35,1	4,38.9248,43.8936,50.741,60.2937,73.5026,91.7769,117.6028,152.6758,182.5747,192.2631,181.1763,149.8403,113.2518,85.7948,65.7427,50.5892,38.9324,29.8691,22.7881,17.2493,12.9242,9.56	302,6.:
31 100000,35,1	5,29,4184,33.6624,39.2699,46.8605,57.1013,70.9152,89.7018,115.9533,151.3733,181.5526,191.4669,180.5608,149.3684,112.8946,85.5281,65.5477,50.4512,38.8385,29.8091,22.754,17.235,12.92	:51,9
•		
Normal text file	length:1554919 lines:4754 Ln:1 Col:1 Sel:0 0 Dos\Windows UTF-8	INS //
1.0.11.0.10.0.11.0		//

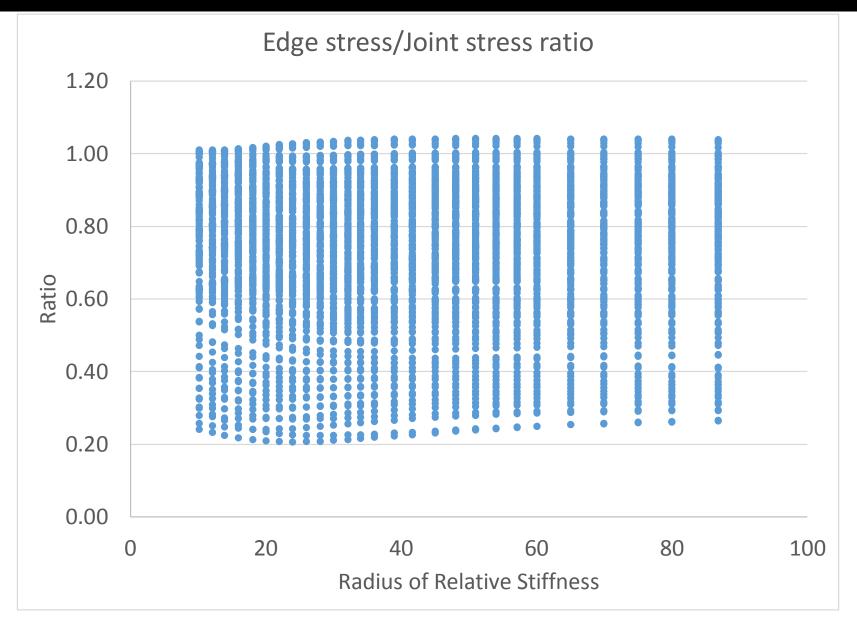
🔼 Civil, Environmental, and Geo- Engineering


UBOL, Task 4, 20 Dec 2016

University of Minnesota

UBOL, Task 4, 20 Dec 2016

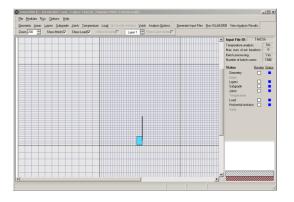
University of Minnesota

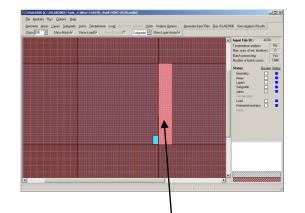

UBOL, Task 4, 20 Dec 2016

University of Minnesota

UBOL, Task 4, 20 Dec 2016

University of Minnesota

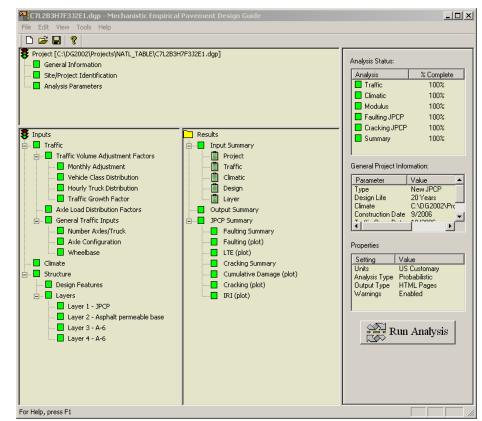



UBOL, Task 4, 20 Dec 2016

Task 4, Building database of responses

University of Minnesota

- Response of 6x6 panel system with asphalt shoulder to axle loading at midslab
- Response of 6x6 panel system with AC shoulder to axle loading at joint with interlayer void
- Additional factorials to be conducted with PCC shoulders



Wrong void location

Task 4, MEPDG national database

University of Minnesota

- Database of 170k
 MEPDG 1.1 projects
 summarizing:
 - 7 climates, 8 PCC overlay thicknesses
 - 2 existing PCC thicknesses, 2 subgrade types
 - 2 lane widths, 2 joint spacing
 - Interpolate for EPCC, Mod Rupture, COTE

• Determine single-layer equivalent of two-layer UBOL systems, use with database to evaluate top-down/bottom-up damage

Remaining work

- Finalize NNs, correct void analysis
- Integrate with erosion in the faulting model
- Assemble the model

Contract modification will be required:

- To allow more time to complete the project
- To account for PI's move to another institution
 - Move project to UPitt
 - Appoint an interim PI at the University of Minnesota and modify the contract with UPitt

- Task 4: UBOL procedure development April 30, 2017
- Task 5: Procedure user guide development July 31, 2017
- Task 6: Evaluate guidelines on suitability of UBOL August 31, 2017
- Task 7: Draft final report September 30, 2017
- Task 8: Final report December 31, 2017

