

### TPF(5)-169: Development of an Improved Design Procedure for Unbonded Concrete Overlays

Lev Khazanovich, PhD Julie M. Vandenbossche, PhD, PE Steven G. Sachs, PhD

# Outline

- A brief summary of the previous work
- Cracking modeling
- Rudimentary software
- Remaining work

### **Unbonded Overlays**





## **Design Procedures**

## **Design Procedures**

| Design Factors                                                                   | AASHTO                                                   | Corps of<br>Engineers                                    | Rollings                                                                                         | PCA                                                                          | Minnesota                                                      | MEPDG                                                                                                         |
|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Difference in<br>strength/modulus<br>of overlay and<br>base pavement<br>concrete | Not<br>considered                                        | Thickness of<br>base pavement<br>is adjusted             | Included<br>directly in<br>calculation of<br>stresses and<br>design factors                      | Included<br>directly in<br>calculation of<br>stresses and<br>design factors  | Not considered                                                 | Included<br>directly in<br>calculation of<br>stresses and<br>deflections                                      |
| Cracking in<br>base pavement<br>before overlay                                   | Effective<br>thickness of<br>base pavement<br>is reduced | Effective<br>thickness of<br>base pavement<br>is reduced | Modulus of<br>elasticity of base<br>pavement is<br>reduced                                       | Included<br>directly in<br>calculation of<br>stresses using<br>soft elements | Thickness of<br>base pavement<br>is reduced                    | PCC damage<br>in the existing<br>slab is<br>considered<br>through a<br>reduction in its<br>elastic<br>modulus |
| Fatigue effects<br>of traffic on<br>uncracked base<br>pavement                   | Effective<br>thickness of<br>base pavement<br>is reduced | Effective<br>thickness of<br>base pavement<br>is reduced | Included in<br>terms of<br>equivalent<br>traffic                                                 | Not considered                                                               | Not considered                                                 | Not<br>considered                                                                                             |
| Cracking of<br>base after<br>overlay                                             | Not directly<br>considered                               | Not directly<br>considered                               | Modulus of<br>elasticity of base<br>is reduced to<br>compensate for<br>cracking under<br>traffic | Not considered                                                               | Not considered                                                 |                                                                                                               |
| Temperature<br>curling or<br>moisture<br>warping                                 | Assumes<br>AASHTO<br>Road Test<br>conditions             | Not considered                                           | Not considered                                                                                   | Does not affect<br>thickness<br>selection                                    | Not considered                                                 | Included<br>directly in<br>calculation of<br>stresses and<br>deflections                                      |
| Joint spacing                                                                    | Maximum<br>joint spacing<br>1.75*hOL<br>(JPCP)           | No<br>recommendation<br>provided                         | No<br>recommendation<br>provided                                                                 | Maximum<br>joint spacing in<br>feet is<br>1.75*hoL(in)<br>(JPCP)             | 15 ft if 7 in <<br>hOL < 10.5 in;<br>20 ft if hOL ><br>10.5 in | Included<br>directly in<br>calculation of<br>stresses and<br>deflections                                      |

SWANSON ENGINEERING

PIT

## **Design Procedures**

| Design Factors         | AASHTO                                                                                      | Corps of<br>Engineers            | Rollings                                                     | PCA                                                                                                        | Minnesota                                                                                                                                        | MEPDG                                                           |
|------------------------|---------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Joint load<br>transfer | Thickness<br>increased if<br>not doweled                                                    | Dowels<br>assumed                | Not considered                                               | Not specified<br>for overlay but<br>considered in<br>evaluation of<br>base pavement                        | Dowels<br>assumed                                                                                                                                | Included<br>directly in<br>calculation of<br>deflections        |
| Drainage               | Included in<br>thickness<br>design by<br>empirical<br>coefficient                           | Not considered                   | Requires retrofit<br>of drainage<br>system (if<br>necessary) | Edge drains are<br>recommended<br>where<br>pumping and<br>erosion has<br>occurred in the<br>existing slab. | Edge drains<br>and permeable<br>interlayer for<br>all pavements,<br>interceptor<br>drains when<br>overlay is<br>wider than the<br>base pavement. | Requires<br>retrofit of<br>drainage<br>system (if<br>necessary) |
| Interlayer             | Recommends<br>1-in min. thick<br>AC interlayer<br>or permeable<br>open-graded<br>interlayer | No<br>recommendation<br>provided | No<br>recommendation<br>provided                             | Thin interlayer<br>(<0.5 in) if<br>extensive<br>repair work<br>performed.<br>Thick (>0.5 in)<br>otherwise. | >1 in<br>>2 in if base<br>pavement is<br>badly faulted<br>and/or has a<br>rough profile                                                          | 1-2 in                                                          |



## Interlayer

- Separates horizontal movements of the overlay and existing pavement
- Provides uniform support to the overlay
- May provide additional drainage
- Many overlay failures are attributed to poor performance of the interlayer
- Design recommendations (if any) are prescriptive
- The use of non-woven fabric interlayers has been recently proposed




### TPF-5(269) Development of an Improved Design Procedure for Unbonded Concrete Overlays

- **Original Project**
- University of Minnesota (PI: Lev Khazanovich)
- University of Pittsburgh (co-PI: Julie Vandenbossche)
- Dr. Mark Snyder (consultant)

Since November 2017

- University of Pittsburgh (Lev Khazanovich and Julie Vandenbossche)
- Dr. Mark Snyder (consultant)



- Field studies
- Lab testing
- Analytical modeling
- Performance modeling

### Field studies: lessons learned

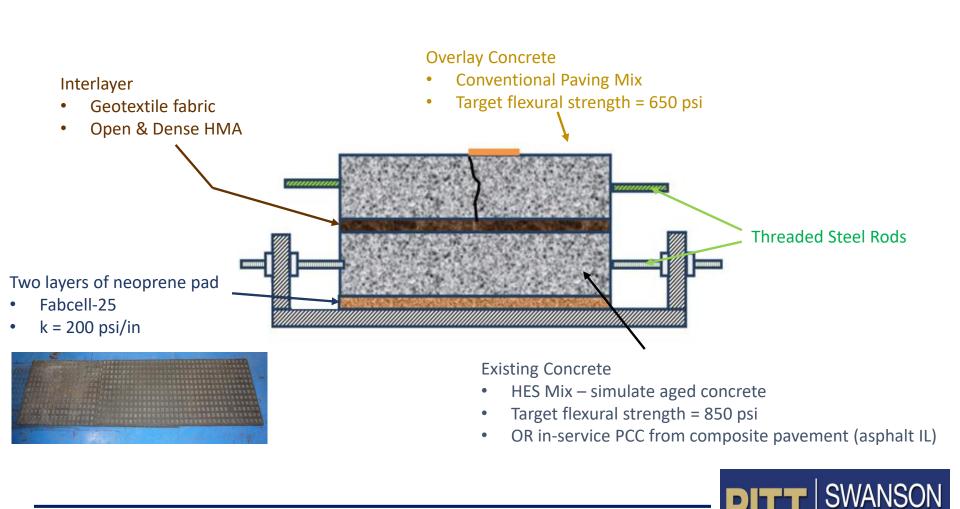
Factors affecting interlayer performance

- Erodibility Stripping of interlayer adjacent to joints leads to interlayer erosion.
- Strength/stiffness There is a potential for consolidation or crushing of interlayer adjacent to transverse joint if strength or stiffness are inadequate.



US 23 in MI (courtesy of Andy Bennett)

- es MnROAD Cell 305 MnROAD Cell 305
- Permeability Drainage within interlayer reduces pressure build-up.




**Mechanisms Investigated:** 

- 1. Ability to prevent reflective cracking
- 2. Stiffness of interlayer
- 3. Friction along interlayer system
- 4. Vertical resistance to uplift pull off



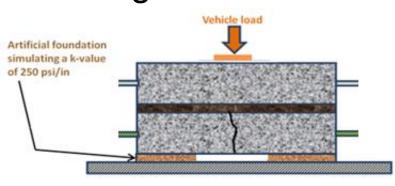
## Specimen setup



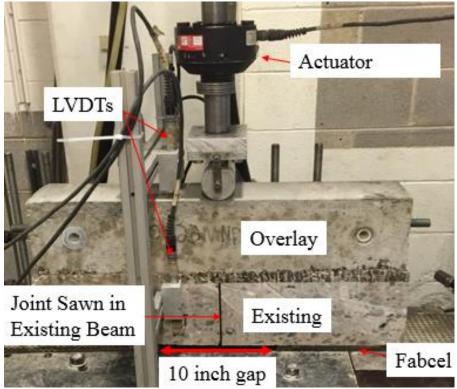


### Interlayers

| Roadway         | Asphalt Description            | Ave. Asphalt<br>Thickness | Specimen<br>Designation |
|-----------------|--------------------------------|---------------------------|-------------------------|
| US-131, MI      | Old, dense graded              | 1 in                      | MIDAU                   |
| US-131, MI      | Old, open-graded               | 2 in                      | MIOAU                   |
| I-94,<br>MnROAD | Old, dense graded, milled      | 0.875 in                  | MNDAM                   |
| l-94,<br>MnROAD | Old, dense graded,<br>unmilled | 2.75 in                   | MNDAU                   |
| US-169, MN      | New, open graded (PASRC)       | 1.75 in                   | MNONU                   |
| SR-50, PA       | New, dense graded              | 1 in                      | PADNU                   |


Propex Reflectex - 15  $oz/yd^2$  fabric = F15 Propex Geotex 1001N - 10  $oz/yd^2$  fabric = F10




SWAN

# Ability to prevent reflective cracking

Load increased until reflective crack
generated



- 2 LVDTs record overlay beam disp
- 2 LVDTs record existing beam disp
- Recorded 3.5 in to the left of the load



Sufficient "cushion" to prevent reflective cracking?

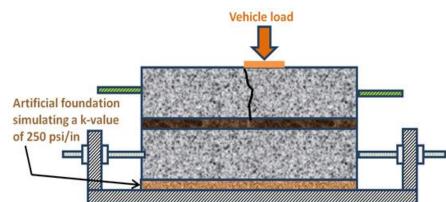




- "True" reflective cracking rarely occurs in the field, unless non-uniform support conditions exist
- Fabric tends to increase resistance to reflective cracking when compared to HMA



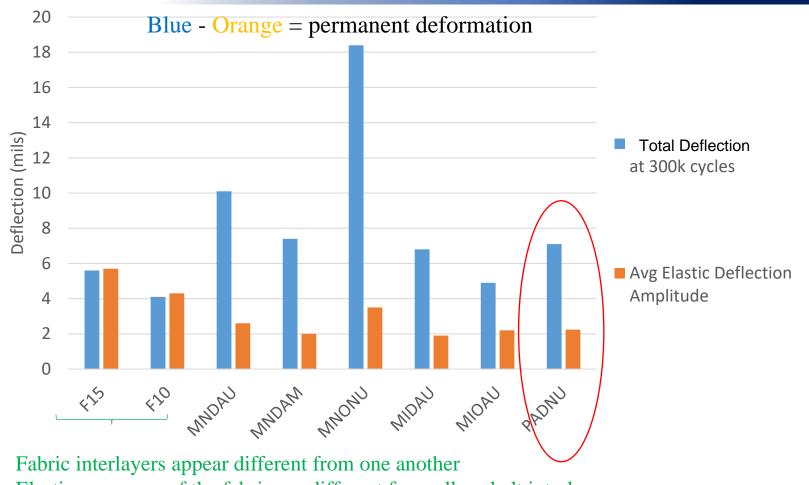
## **Interlayer Resilience**


#### Reduced stiffness

- Differential movements absorbed by interlayer
- Large deflections when vehicle loads are applied



### **Properties Monitored**

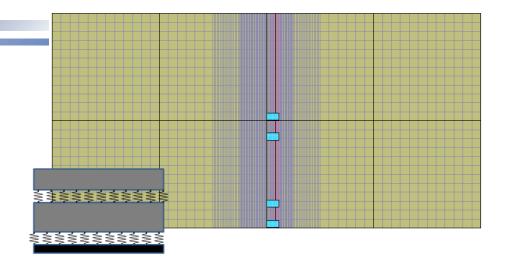

- Max deflections
- Differential deflections
- LTE



Environmental Engineering



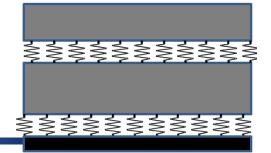
### **Elastic Deflection and Permanent Deformation**




- Elastic responses of the fabric are different from all asphalt interlayers
- MN open graded asphalt appears different from other asphalts
   University of Pittsburgh Department of Civil and Environmental Engineering



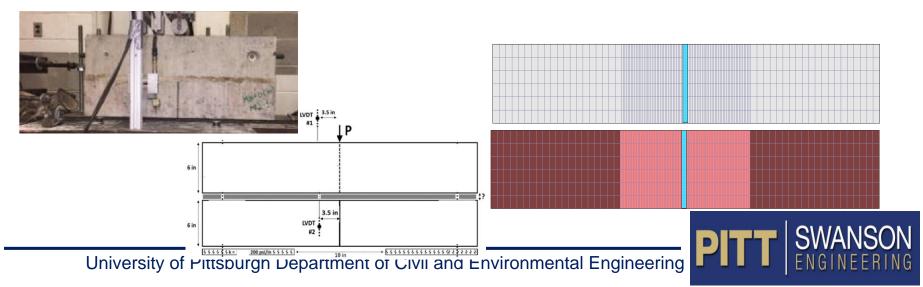
# Totski Model


- Model accounts for
  - overlay
  - existing slab
  - subgrade support



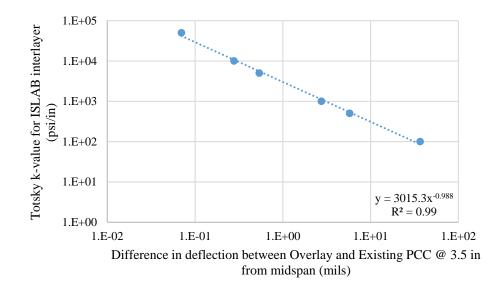
- "cushioning" property of the interlayer using Totski springs layer
- Joints in the overlay do not necessarily match joints in the existing pavements
- Unlike AASHTO M-E, the structural model does not convert the existing pavement and overlay into a singlelayer system








- Advantages of Totski approach:
  - Computationally efficient (big concern for finite element models)
  - Already incorporated into ISLAB2005
  - Can be adopted for more sophisticated models (e.g., 3D joint faulting) without issue
  - Modeling of gaps between the overlay and existing pavement
- Requires estimate of interlayer spring coefficient


# Modeling reflective cracking beam behavior and interlayer response

- 2D finite element simulation of reflective cracking beams using ISLAB2005
- Factorial of simulations created for exact beam dimensions and support conditions
  - Interlayer coefficient varied from 10 to 50,000

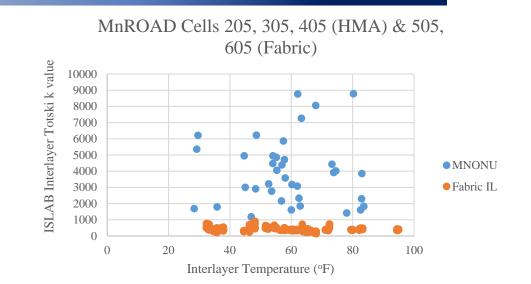


### Totski Interlayer k-value

- Deflection data from reflective cracking test
  - Test setup modeled in ISLAB
  - 1 kip response for different k-values



### Totski Interlayer k-value


| Interlayer Type | Average Totski<br>k-value<br>(psi/in) | Standard<br>Deviation<br>(psi/in) |
|-----------------|---------------------------------------|-----------------------------------|
| F15             | 337                                   | 63                                |
| F10             | 372                                   | 55                                |
| MNDAU           | 3342                                  | 1262                              |
| MNDAM           | 3613                                  | 1175                              |
| MNONU           | 2555                                  | 901                               |
| MIDAU           | 4046                                  | 966                               |
| MIOAU           | 3566                                  | 1095                              |
| PADNU           | 3391                                  | 1533                              |

- Average lab and FWD for asphalt yields Totski k-value of approximately 3500 psi/in
- Average lab and FWD results is 425 psi/in for nonwoven geotextile fabric interlayer



### Totski Interlayer k-value Backcalculation

FWD data from
 MnROAD used to
 establish k-values
 for Cells 105 - 605



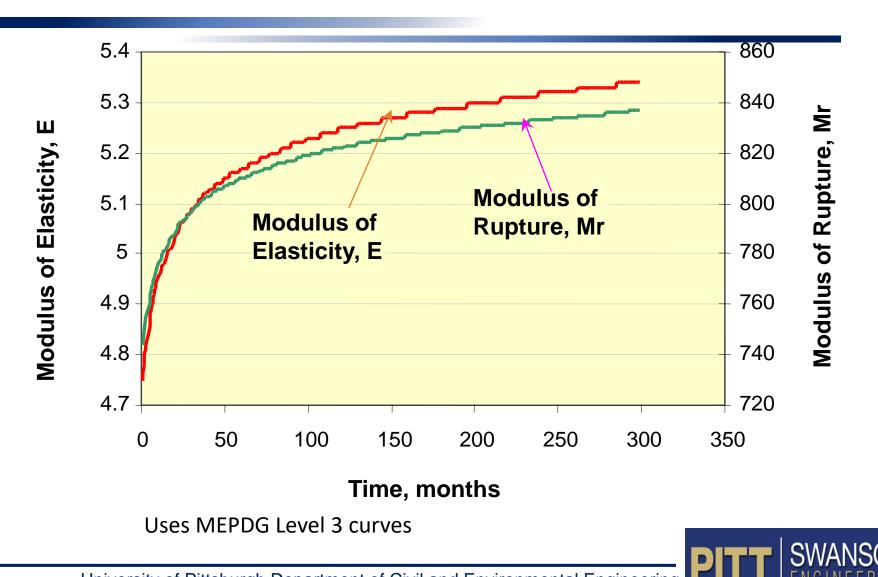
SWA

| Comparison between means of established Totski | P-value of t-test for |
|------------------------------------------------|-----------------------|
| k-values                                       | difference in means   |
| Fabric LAB vs. MnROAD Fabric FWD               | 0.126                 |
| MNONU LAB vs. MnROAD Asphalt FWD               | 0.137                 |
| MnROAD Fabric FWD vs. MnROAD Asphalt           | < 0.001               |
| FWD                                            |                       |



# **Performance Modeling**

- AASHTOWare Pavement ME
  - Transverse cracking model
  - Faulting model (subgrade erosion)
     Interlayer properties are ignored!
- This study
  - Cracking modeling
    - Transverse cracking model
    - Transverse joint damage model (corner/longitudinal cracking)
  - Faulting model


Interlayer stiffness and degradation are accounted for!

# **Cracking Model**

- PavementME (MEPDG) framework:
  - Effect of PCC age on concrete strength and stiffness
  - Axle load spectrum
  - Curling analysis
  - Effect of built-in curling
  - Incremental damage analysis
- Significant modifications



## PCC Strength Gain

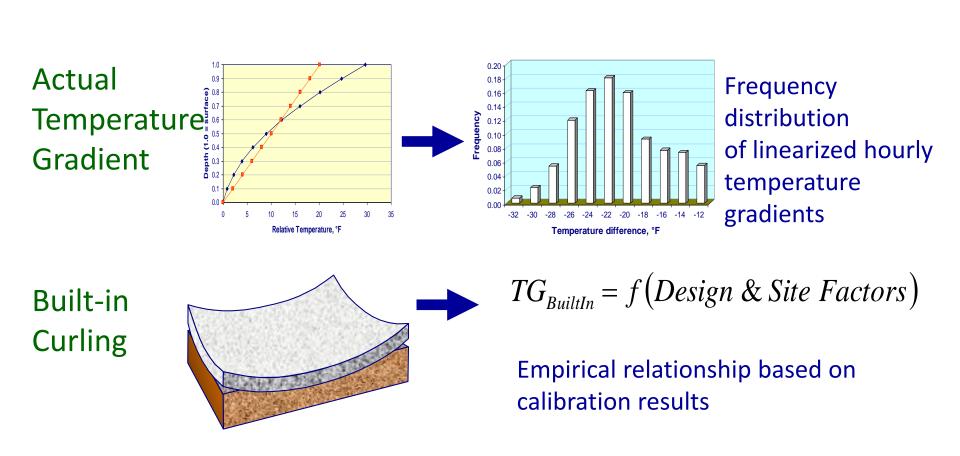




- MEPDG default axle spectrum distribution
- AADTT for the first year
- Linear traffic volume growth model






- EICM is used to predict hourly temperature profile through PCC based on historical hourly climatic data
- Both daytime (positive) and nighttime (negative) thermal gradient probability distributions are obtained



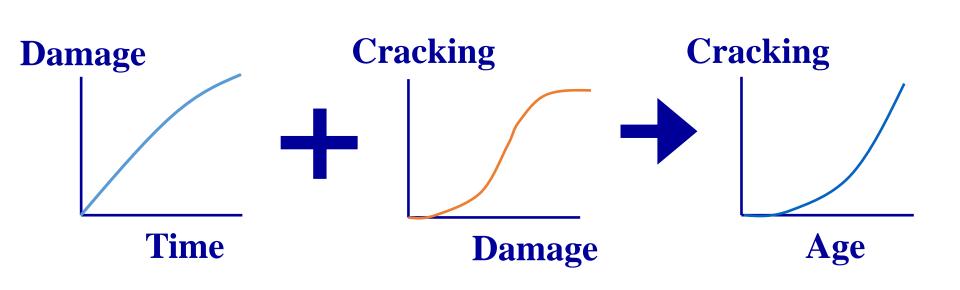
- Temperature distribution that distorts PCC slabs is characterized in terms of equivalent temperature gradient affecting bending analysis
- Nonlinear temperature component is accounted for analytically



# **Curling Analysis**



### Incremental Damage Analysis


Fatigue Damage = 
$$\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} \sum_{n} \frac{n_{ijklmn}}{N_{ijklmn}}$$
  
 $Log(N) = 2.0 * \left(\frac{M_r}{\sigma_{total}}\right)^{1.22} + 0.4371$ 

n<sub>ijklmn</sub> = Applied number of load applications at condition i,j,k,... N<sub>ijklmn</sub> = Allowable number of load applications at condition i,j,k,...

i = Age ;k = Axle combination; j nonlinear temperature gradient/ = Load level;m = Temperature gradient;n = Traffic path

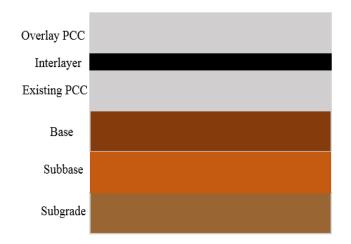


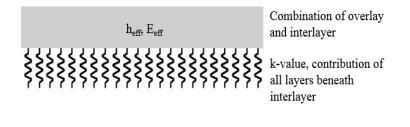
### Cracking Prediction





### AASHTOWare Pavement ME (MEPDG)


- Adapted MEPDG performance prediction models for new pavements
- Empirical stiffness reduction factors for distresses in the existing pavement


$$E_{BASE/DESIGN} = C_{BD} \times E_{TEST}$$



### MEPDG Unbonded Overlay Cracking Model

Modeled as newly constructed JPCP





- Joints in the overlay match joints in the existing slab
- · Existing pavement is considered a base of the overlay
- Deflection basins of the overlay and the existing pavements are the same
- Interlayer deterioration is ignored

# TPF(5)-169 Cracking Model

- Toski model for structural responses
  - Independent curling of the overlay and existing pavement
  - Composite bending behavior
  - Mismatched joints in the overlay and existing pavements
- Modified temperature frequency analysis
- Interlayer deterioration

# TPF(5)-169 Cracking Model

- Modified built-in curling analysis (NCHRP 1-51 approach)
- Longitudinal edge and transverse cracking analysis
- Monte Carlo-based reliability analysis (MnPAVE Rigid-based approach)





- EICM used to predict hourly temperature profile through PCC based on historical hourly climatic data
- For each hour, the temperature distribution is approximated using quadratic distribution

$$T(z) = A + B z + C z^2$$



# **Curling Analysis**

 Linear gradient and non-linear stresses at the surfaces are determined (Choubane and Tia 1992, Khazanovich 1994)

$$T_L(z) = T_0 + B z \qquad \Delta T_L B h$$

$$\sigma_{Nxx}(z) = \sigma_{Nyy}(z) = \frac{C E}{1-\mu} \alpha \left[\frac{h^3}{12} - z^2\right]$$

• Frequencies of combinations of B and C are determined (Hiller and Roesler 2010)

#### **Frequency Table**

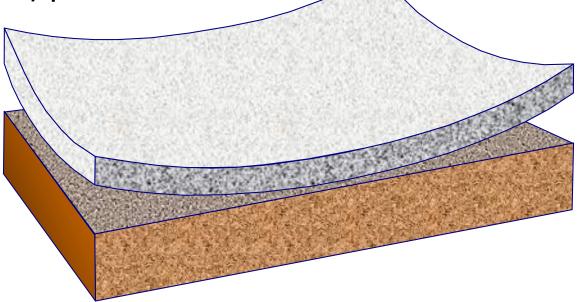
|          | -0.4    | -0.3    | -0.2    | -0.1    | 0       | 0.1     | 0.2     | 0.3     | 0.4     | 0.5     |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| -24.8994 | 0       | 0       | 0.00117 | 0.00223 | 0       | 0       | 0       | 0       | 0       | 0       |
| -23.0144 | 0       | 0.00106 | 0.00493 | 0.01397 | 0.00023 | 0       | 0       | 0       | 0       | 0       |
| -21.1352 | 0       | 0.00376 | 0.01725 | 0.0493  | 0.00141 | 0       | 0       | 0       | 0       | 0       |
| -19.2559 | 0.00141 | 0.0061  | 0.01878 | 0.08462 | 0.00622 | 0       | 0       | 0       | 0       | 0       |
| -17.371  | 0.00282 | 0.00681 | 0.01526 | 0.07418 | 0.01514 | 0.00399 | 0       | 0       | 0       | 0       |
| -15.4917 | 0.00106 | 0.00634 | 0.01291 | 0.05692 | 0.0311  | 0.00481 | 0.00258 | 0       | 0       | 0       |
| -13.6124 | 0.00129 | 0.00552 | 0.00939 | 0.03263 | 0.03474 | 0.0061  | 0.00587 | 0       | 0       | 0       |
| -11.7275 | 0.00117 | 0.00552 | 0.00669 | 0.01068 | 0.00657 | 0.00599 | 0.00692 | 0       | 0       | 0       |
| -9.8482  | 0       | 0.00329 | 0.00599 | 0.00646 | 0.0027  | 0.00716 | 0.00646 | 0.00305 | 0       | 0       |
| -7.9689  | 0       | 0.00211 | 0.00692 | 0.00681 | 0.00493 | 0.00669 | 0.00458 | 0.00552 | 0       | 0       |
| -6.084   | 0       | 0.00117 | 0.00469 | 0.00751 | 0.00716 | 0.00634 | 0.00317 | 0.0088  | 0       | 0       |
| -4.2047  | 0       | 0       | 0.0054  | 0.00704 | 0.00505 | 0.0054  | 0.0027  | 0.00892 | 0.00176 | 0       |
| -2.3255  | 0       | 0       | 0.00305 | 0.00857 | 0.00505 | 0.00458 | 0.00282 | 0.00599 | 0.00376 | 0       |
| -0.4405  | 0       | 0       | 0       | 0.00751 | 0.00493 | 0.00411 | 0.00399 | 0.00552 | 0.00411 | 0       |
| 1.4387   | 0       | 0       | 0       | 0.00516 | 0.00786 | 0.00481 | 0.00282 | 0.00657 | 0.00552 | 0.00106 |
| 3.318    | 0       | 0       | 0       | 0.00246 | 0.00634 | 0.00587 | 0.00364 | 0.00751 | 0.00775 | 0       |
| 5.2029   | 0       | 0       | 0       | 0       | 0.0061  | 0.00704 | 0.00657 | 0.00716 | 0.00528 | 0       |
| 7.0822   | 0       | 0       | 0       | 0       | 0.00364 | 0.00516 | 0.00869 | 0.00845 | 0.0054  | 0.00188 |
| 8.9615   | 0       | 0       | 0       | 0       | 0.00094 | 0.00481 | 0.00493 | 0.00505 | 0.00563 | 0.00141 |
| 10.8464  | 0       | 0       | 0       | 0       | 0.00047 | 0.00235 | 0.00634 | 0.00681 | 0.00399 | 0.00211 |
| 12.7257  | 0       | 0       | 0       | 0       | 0       | 0.00188 | 0.00246 | 0.00376 | 0.00293 | 0.00141 |
| 14.605   | 0       | 0       | 0       | 0       | 0.00023 | 0       | 0.00176 | 0.00293 | 0.00235 | 0       |
| 16.4899  | 0       | 0       | 0       | 0       | 0.00059 | 0       | 0       | 0.00117 | 0.00188 | 0       |
| 18.3692  | 0       | 0       | 0       | 0       | 0.00059 | 0       | 0       | 0       | 0.00129 | 0       |

SWANSON ENGINEERING

PITT

С

#### $\Delta T_L$


\*Adjusted for built-in curling



#### **EICM** Analysis

- 70 weather stations
- Overlay thickness 4, 6, 8, and 10 in
- Frequency tables generated for each case
- Interpolation for other thicknesses

- Due to irreversible shrinkage
- Due to temperature gradient during concrete solidification (hydration) process



(Eisenmann and Leykauf, 1994; Yu, Khazanovich, Darter, and Ardani 1998; Yu and Khazanovich 20 Vandenbossche 2006)







To accurately model built-in curling, first several days

of concrete pavement should be simulated precisely

- Cement hydration process
- Ambient temperature and humidity, solar radiation, and wind

Sun and cloud cover

DIATION

SOLAR ADSORPTION

CONDUCTION

Ruiz et al. 2005

- Heat transfer & moisture transport
- Concrete creep



 Concrete fracture (joint formation)

Hydrating Concrete

Base Layer

Subbase Laver

• PavementME

$$\Delta T_{Built-in} = -10 \ ^{o}F$$

- NCHRP 1-51 (Khazanovich and Tompkins 2017)  $\Delta T_{Built-in} = -10 \ ^{o}F \pm A$
- where A depends on the ratio between the PCC slab and base stiffnesses

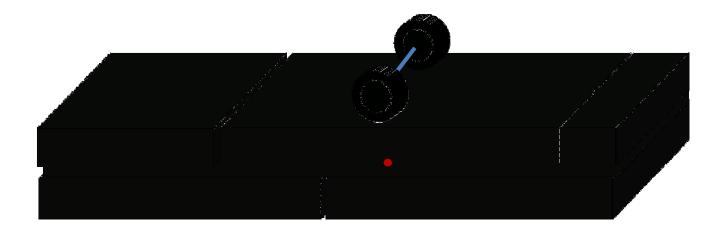


• TPF(5)-169

$$\Delta T_{Built-in} = -10 \ ^{o}F \pm A$$

where A depends on the interlayer stiffness and joint spacing

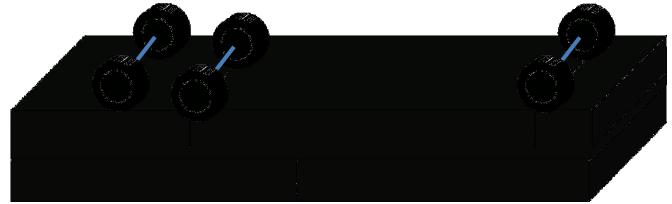
- $\Delta T_{Built-in} = -10 \ ^{o}F + A$  is used for daytime curling analysis
- $\Delta T_{Built-in} = -10 \ ^{o}F A$  is used for nighttime curling analysis

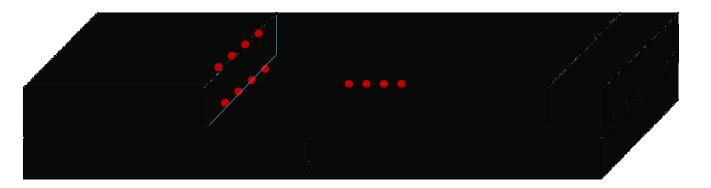



- Several factorials of ISLAB2000 Totski model runs (more than 50,000 cases)
- Several NNs for top-down cracking and joint damage analysis
  - w/o voids in the interlayer
  - with voids in the interlayer
- NCHRP 1-37A NNs for longitudinal edge loading analysis
- Westergaard solution for daytime curling analysis






#### Bottom-up transverse cracking








#### Top-down and joint damage







#### NNs for Top-down and Joint Damage Analysis

- Overlay radius of relative stiffness
- Axle weight/overlay weight ratio
- Axle spacing
- Transverse joint LTE
- Korenev's non-dimensional temperature gradient
- Overlay/shoulder LTE
- Void/no void

#### Similarity Concept

Two overlay structures are *similar* if

$$L_{1} = L_{2}$$

$$\ell_{1} = \ell_{2}$$

$$\frac{AGG_{x,1}}{k_{Tot,1}\ell_{1}} = \frac{AGG_{x,2}}{k_{Tot,2}\ell_{2}}$$

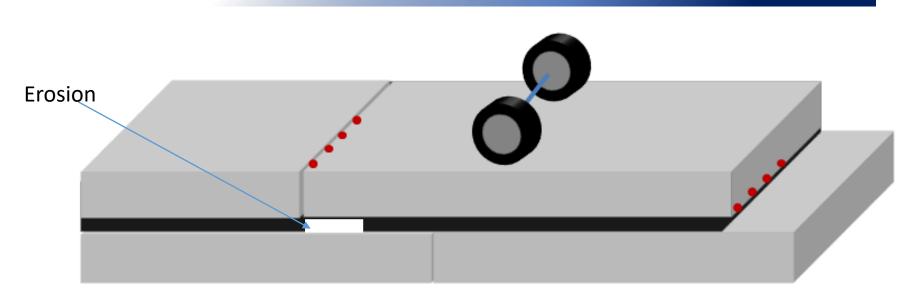
$$\frac{AGG_{y,1}}{k_{Tot,1}\ell_{1}} = \frac{AGG_{y,2}}{k_{Tot,2}\ell_{2}}$$

$$\frac{P_{1}}{h_{1}\gamma_{1}} = \frac{P_{2}}{h_{2}\gamma_{2}}$$

$$\varphi_{1} = \varphi_{2}$$

$$\sigma_2 = \frac{h_1 \gamma_2 \ell_2^2}{h_2 \gamma_1 \ell_1^2} \sigma_1 + \Delta \sigma_{NLT}$$

 $\gamma$  = unit weight


Korenev's (1962) nondimensional temperature gradient

$$\varphi = \frac{2\alpha(1+\mu)\ell^2}{h^2} \frac{k}{\gamma} \Delta T$$

#### **Incremental Damage Calculation**

- Increment: 1 year
- Frequencies for linear and non-linear temperature gradients
- Stress and damage computations with and w/o void Fatigue Damage =  $\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} \sum_{n} \frac{n_{ijklmn}}{N_{ijklmn}} \quad Log(N) = 2.0* \left(\frac{M_r}{\sigma_{total}}\right)^{1.22} + 0.4371$
- Four types of fatigue damage
  - Longitudinal edge, bottom overlay surface (transverse bottom-up cracking)
  - Longitudinal edge, top overlay surface (transverse bottom-up cracking)
  - Transverse joint, top overlay surface (longitudinal/corner cracking)
  - Transvers joint, bottom overlay surface (longitudinal cracking)

#### **Effect of Interlay Erosion**



2 cases

- No void
- 24-in long, lane-wide void

SWAN

PIT'

#### **Incremental Damage Calculation**

• Damage computation for the increment

 $DAM_i = (1 - \Lambda_i) DAM_{i,w/o void} + \Lambda_i DAM_{i,w void}$ 

 $\Lambda_i$ : interlayer deterioration index for the increment i. Depends on the interlayer age and properties

#### **Cracking Analysis**

# % of Cracked Slabs = $\frac{100\%}{1 + C_3 DAM^{C_4}}$

#### • Step 1

- Top-down transverse cracking
- Bottom-up transverse cracking
- Top-down longitudinal cracking
- Bottom-up longitudinal cracking



### **Cracking Analysis**

- Step 2
  - Transverse cracking

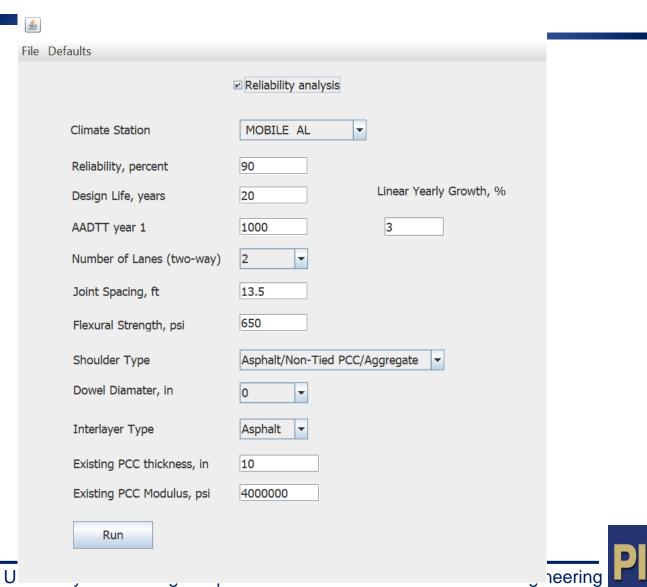
 $TRCRACK = (TCRK_{Bottom_up} + TCRK_{top-down} - TCRK_{Bottom_up} * TCRK_{top-down}) 100$ 

Longitudinal cracking

 $LCRACK = (LCRK_{Bottom_up} + LCRK_{top-down} - LCRK_{Bottom_up} * LCRK_{top-down})100\%$ 

• Step 3: Total cracking

CRACK = (TRCRACK + LCRACK - TRCRACK \* LCRACK) \* 100%




### **Reliability Analysis**

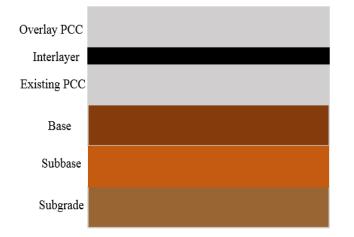
- Inputs:
  - Reliability Level
  - Coefficient of variation of Overlay thickness
  - Coefficient of variation PCC strength
  - Allowable cracking level at the end of the design life
- Procedure
  - Perform simulation for a factorial of PCC overlay thicknesses and strengths
  - Determine the overlay thickness resulting in the percentage of thickness/strength combinations with cracking less than the specified allowable level



#### **Rudimentary Software**



SWANS


57

# **Remaining Work**

- Add 6 ft x 6 ft slabs
- Check analysis for thin overlays (< 6 in)
- Increase the number of weather stations
- Incorporate the faulting model into the software
- Upgrade the interlayer deterioration model
- Provide default inputs

#### **Pavement ME limitations**

- Modeled as newly constructed JPCP
  - Interlayer is the base layer

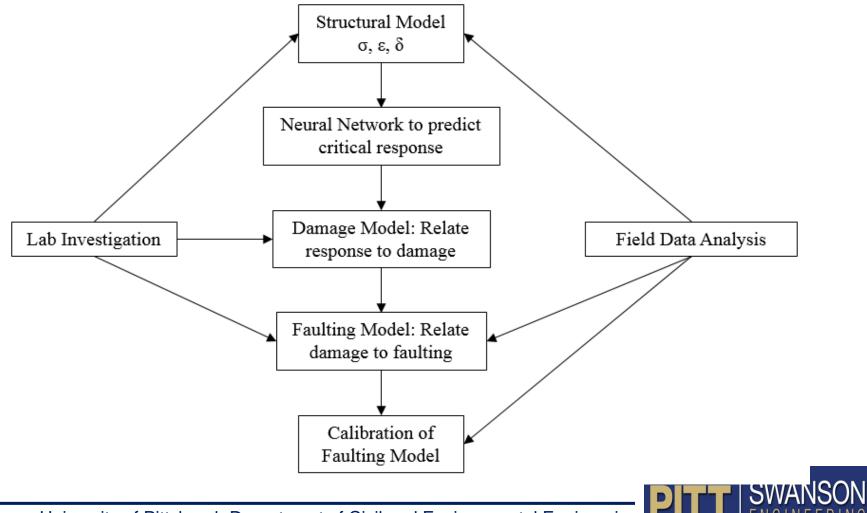


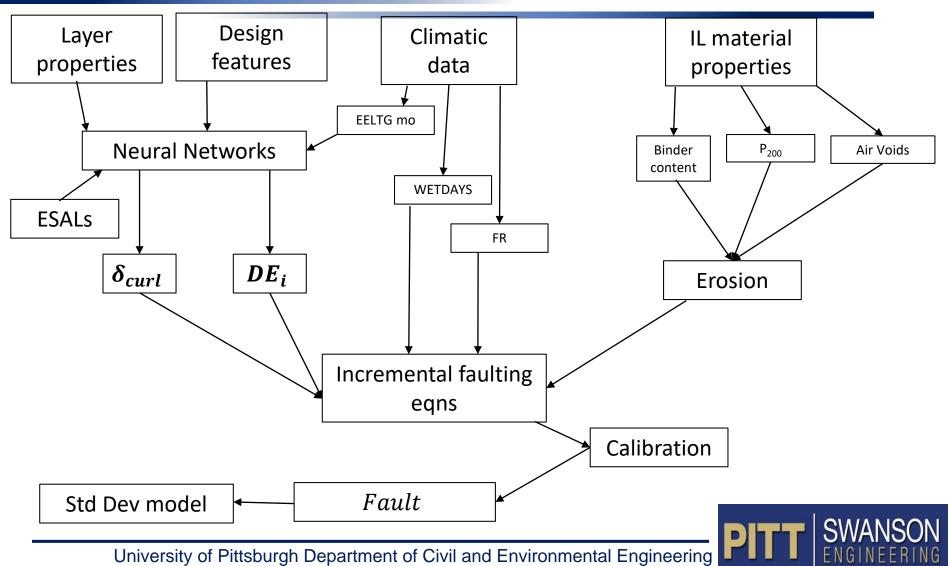


Combination of overlay

k-value, contribution of all layers beneath




#### **Pavement ME limitations**

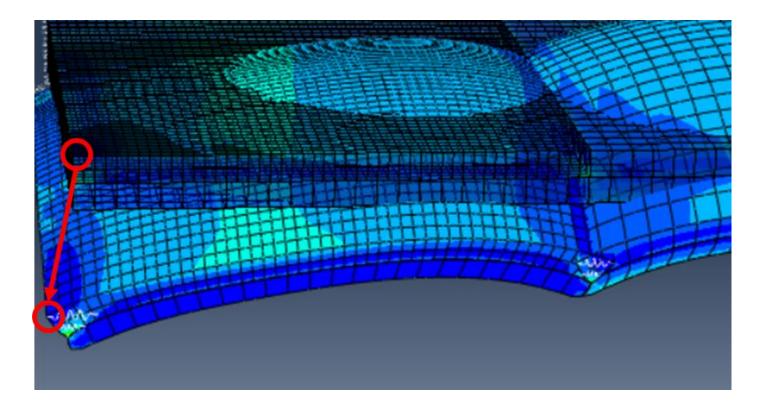

#### MEPDG Documentation Appendix JJ

SW

| Erodibility index                                                                                                                            | Erodibility Class | Material Description and Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| <ul> <li>Erodibility index</li> <li>Assigned integer value</li> <li>based upon base type</li> <li>1 – extremely erosion resistant</li> </ul> | 1                 | <ul> <li>(a) Lean concrete with approximately 8 percent cement; or with long-term compressive strength &gt; 2,500 psi (&gt;2,000 psi at 28-days) and a granular subbase layer or a stabilized soil layer, or a geotextile fabric is placed between the treated base and subgrade, otherwise class 2.</li> <li>(b) Hot mixed asphalt concrete with 6 percent asphalt cement that passes appropriate stripping tests and aggregate tests and a granular subbase layer or a stabilized soil layer (otherwise class 2).</li> <li>(c) Permeable drainage layer (asphalt treated aggregate or cement treated aggregate and with an appropriate granular or geotextile separation layer placed between the treated permeable base and</li> </ul> |  |  |  |
| to                                                                                                                                           |                   | subgrade.<br>(a) Cement treated granular material with 5 percent cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 5 – very erodible                                                                                                                            | 2                 | manufactured in plant, or long-term compressive strength 2,000 to 2,500 psi (1,500 to 2,000 psi at 28-days) and a granular subbase layer or a stabilized soil layer, or a geotextile fabric is placed between the treated base and subgrade; otherwise class 3. (b) Asphalt treated granular material with 4 percent asphalt cement that passes appropriate stripping test and a granular subbase layer or a treated soil layer or a geotextile fabric is placed between the treated soil subgrade; otherwise class 3.                                                                                                                                                                                                                    |  |  |  |
| UBOL EROD = 1                                                                                                                                | 3                 | <ul> <li>(a) Cement-treated granular material with 3.5 percent cement<br/>manufactured in plant, or with long-term compressive strength<br/>1,000 to 2,000 psi (750 psi to 1,500 at 28-days).</li> <li>(b) Asphalt treated granular material with 3 percent asphalt cement<br/>that passes appropriate stripping test.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                                                                              | 4                 | Unbound crushed granular material having dense gradation and<br>high quality aggregates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                              | 5                 | Untreated soils (PCC slab placed on prepared/compacted subgrade)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

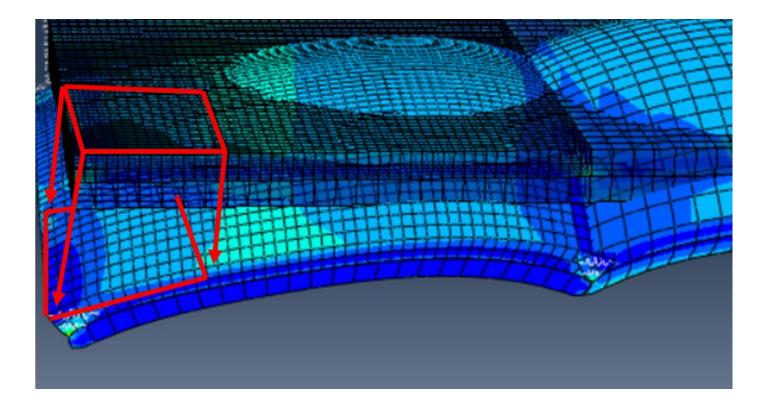
#### Faulting model framework






#### **Differential Energy**

$$DE_m = n_i k \left(\frac{\Sigma \delta_{L,i}^2}{2} - \frac{\Sigma \delta_{U,i}^2}{2}\right)$$


- $DE_m$ =diff energy density deformation accumulated in month m
- $\Sigma \delta_{L,i}$  = sum deflections for loaded slab caused by axle loading
- $\Sigma \delta_{U,i}$  = sum deflections for unloaded slab caused by axle loading
- k = interlayer Totsky k value
- $n_i = #$  of ESAL applications for month m

#### **Predictive Model Response**





#### **Predictive Model Response**





#### **Predictive Model Response**

- Deflection Basin Approach Slab:
  - $\Sigma(\delta_{\Sigma L}^2 * Area)$
  - 2 ft x 6 ft rectangle

- Deflection Basin Leave slab Shoulder Deflection Basin Approach slab Longitudinal Joint may or may not be present of the present
- Deflection Basin Leave Slab:
  - $\Sigma(\delta_{\Sigma UL}^2 * Area)$
  - 2 ft x 6 ft rectangle

#### Faulting model

$$F_{0} = (C_{1} + C_{2} * FR^{0.25}) * \delta_{curl} * [C_{5} * E]^{C_{6}} * log(WETDAYS * P_{200})$$

$$F_{i} = F_{i-1} + C_{7} * C_{8} * DE_{i} * [C_{5} * E]^{C_{6}}$$

$$\Delta Fault_{i} = (C_{3} + C_{4} * FR^{0.25}) * (F_{i-1} - Fault_{i-1}) * C_{8} * DE_{i}$$

$$Fault_{i} = Fault_{i-1} + \Delta Fault_{i}$$

 $F_0 =$ initial maximum mean transverse joint faulting (in)

FR = base freezing index (% time that the top of the base is below freezing (<32°F))

 $\delta_{curl} = \max$  mean monthly PCC upward slab deflection due to curling

E = erosion potential of interlayer: f(% binder content, % air voids,  $P_{200}$ )

 $P_{200}$  = Percent of interlayer aggregate passing No. 200 sieve

WETDAYS = Average number of annual wet days (> 0.1 in of rainfall)

 $F_i$  =maximum mean transverse joint faulting for month i (in)

 $F_{i-1}$  = maximum mean transverse joint faulting for month i-1 (in)

 $DE_i$  = Differential energy density of accumulated during month i

 $\Delta Fault_i$  = incremental monthly change in mean transverse joint faulting during month i (in)

 $C_1 \dots C_8 =$ Calibration coefficients

 $Fault_{i-1}$  = mean joint faulting at the beginning of month i (0 if i = 1)

 $Fault_i$  = mean joint faulting at the end of month i (in)

#### Calibration

- Adjust calibration coeff. to minimize ERROR function
  - Shape of erosion function also fit based upon interlayer characteristics
- Macro driven excel spreadsheet was developed to calibrate the model
- Several calibration coeff. fixed
  - remaining coefficients varied to minimize error
  - switch coefficients being modified
- Bias of model must be considered in calibration coeff.

$$ERROR(C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8) = \sum_{i=1}^{N} (FaultPredicted_i - FaultMeasured_i)^2$$

#### Faulting model

$$F_{0} = (C_{1} + C_{2} * FR^{0.25}) * \delta_{curl} * [C_{5} * E]^{C_{6}} * log(WETDAYS * P_{200})$$

$$F_{i} = F_{i-1} + C_{7} * C_{8} * DE_{i} * [C_{5} * E]^{C_{6}}$$

$$\Delta Fault_{i} = (C_{3} + C_{4} * FR^{0.25}) * (F_{i-1} - Fault_{i-1}) * C_{8} * DE_{i}$$

$$Fault_{i} = Fault_{i-1} + \Delta Fault_{i}$$

$$C_1 = 3.0$$
 $C_5 = 0.015$  $C_2 = 2.5$  $C_6 = 2.202$  $C_3 = 35$  $C_7 = 80$  $C_4 = 0.001$  $C_8 = 0.000002$ 

University of Pittsburgh Department of Civil and Environmental Engineering

SWANSON ENGINEERING

PITT

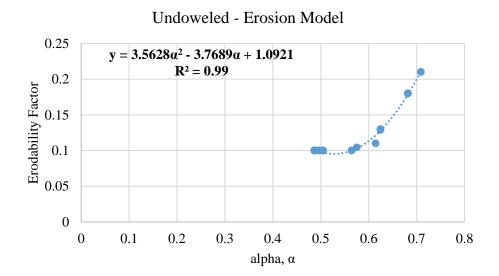
#### Erosion

$$\alpha = \log(1 + a * \%Binder + b * \%AV + c * P_{200})$$

 $\alpha = \text{Erodibility index}$ 

%*Binder* = Percent binder in asphalt interlayer

%AV = Percent air voids in asphalt interlayer


 $P_{200}$  = Percent passing No. 200 sieve in interlayer

*a*, *b*, *c* = Calibration coefficients (0.226, 0.247, 0.066)

$$E = - \begin{cases} (3.5628 * \alpha^2 - 3.7689 * \alpha + 1.0928) & \text{Undoweled pavements} \\ (3.0284 * \alpha^2 - 3.2036 * \alpha + 0.9283) & \text{Doweled pavements} \\ (3.5628 * \alpha^2 - 3.7689 * \alpha + 0.09) & \text{NWGF sections} \end{cases}$$



#### **Erosion Calibration**



SWANSO ENGINEERI

**PIT**