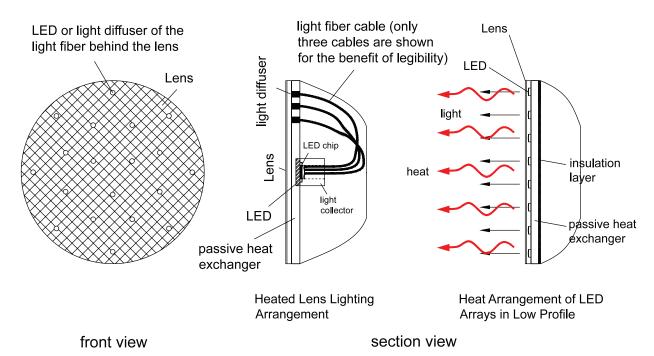
TRANSPORATION POOLED FUND PROGRAM **QUARTERLY PROGRESS REPORT**

Lead Agency (University or Contractor)	:Kansas [DOT	-
INSTRUCTIONS: Project Managers and/or research project investigation quarter during which the projects are active. Project task that is defined in the proposal; a perothe current status, including accomplishments aduring this period.	lease provide a centage compl	a project schedule statu etion of each task; a coi	s of the research activities tied to ncise discussion (2 or 3 sentences) of
Transportation Pooled Fund Project Numb	er	Transportation Poole	ed Fund Program - Report Period:
TPF-5(351)		☐ Quarter 1 (January	/ 1 – March 31)
		☐ Quarter 2 (April 1 -	- June 30)
		☐ Quarter 3 (July 1 –	- September 30)
		X Quarter 4 (Octobe	
Project Title: Self De-Icing LED Signals			
Project Manager:	Phone:	E-mai	
Carla Anderson	785-296-035	7 Carla.a	inderson@ks.gov
Project Investigator:	Phone:	E-ma	il:
Hongyi Cai	785-864-259	7 hyca	ai@ku.edu
Lead Agency Project ID: RE-0721-01	Other Project	ct ID (i.e., contract #):	Project Start Date: August 15, 2016
Original Project End Date: August 2019	Current Proj August 2019	ect End Date:	Number of Extensions: 0
Project schedule status: X On schedule On revised schedule Overall Project Statistics:	le 🗆 A	Ahead of schedule	☐ Behind schedule
Total Project Budget	Total Cos	t to Date for Project	Total Percentage of Work
,			Completed
\$240,000 original, \$320,000 with addendum	\$196,489		65%
Quarterly Project Statistics:			
Total Project Expenses This Quarter		ount of Funds d This Quarter	Percentage of Work Completed This Quarter


10%

\$52,179

\$52,179

Project Description:

This pooled fund project will develop and demonstrate new self de-icing LED signals for highway signalized intersections and railroad signaling applications to solve a well-known problem of the existing LED signal light whose lens is too cool to melt snow and de-ice in wintery conditions. The self de-icing LED signals will adopt one or both of two novel architectures (Figure 1), including (a) "Heated Lens Lighting Arrangement" that uses a single high-power LED and (b) "Heat Arrangement of LED Arrays in Low Profile" that deploys multiple LEDs. The heat generated by the LED(s) is harvested by the passive heat exchanger and stored to heat the lens for melting snow and de-icing in wintery conditions.

Figure 1 The concept of the self de-icing LED signal light, which adopts new architecture of "Heated Lens Lighting Arrangement" or "Heat Arrangement of LED Arrays in Low Profile"

Fully working prototypes of the self-de-icing LED signals have been developed and tested in the laboratory. They have been tested in closed-course settings on the roof of an engineering building followed by field tests on highway intersection and railroad wayside or at-grade crossing signal lights. Each participating agency is required to provide support of three years of funding (\$20,000/year, totaling \$60,000) and will be guaranteed a field test site in each state for testing the fully working prototypes catering to their specific needs of the new type of signals. The research team will work with each participating agency to identify the desired test site on highway intersections or rail track sections and the desired technical specifications for testing the prototypes.

The investigative approach for the proposed project is divided into the three stages. Work in Stage 1 focuses on laboratory development and tests. Work in Stage 2 focuses on testing the three prototypes in a closed-course setting on the roof of the University of Kansas engineering complex and powered by the signal controller cabinet. Work in the third and final stage involves field testing of the developed prototypes on identified highway signalized intersections and rail track sections. On-site demonstration of the prototype signals will also be held for project partners and state DOTs to initiate the implementation process. A final report will provide all relevant data and results along with plans for implementation of the self-de-icing LED signals in affected states.

Progress this Quarter (includes meetings, work plan status, contract status, significant progress, etc.):

During the third quarter (Sept 1, 2018 – Dec 31, 2018) of the project period, we have the following accomplishments.

We have improved the prototypes to the fourth generation (**Figure 1**) with updated LED drivers, plastic housing and new mounting gears, and continued the roof tests of the real-time performance and reliability of the new prototypes in cold snowy winter (**Figure 2**).

Figure 1 The fourth generation of signal lights with improvements.

Figure 2 shows the ongoing roof tests of the fully working prototypes in real-time snowy winter. All signal lights were powered by the signal controller cabinet with real signaling time cycles (in a cycle length of 90 seconds, Red signal light ON for 50 seconds, Green signal light ON for 35 seconds, and Yellow signal light ON for 5 seconds. The signaling time cycles are adjustable, might be adjusted in the upcoming winter season for testing different cycles. A data logger mounted on the tripod pole was connected to a total of 12 temperature sensors mounted on each of the surfaces of the signal lights (4 sensors on each signal light lens), and one more ambient temperature sensor attached on the pole. The temperature data were recorded every 10 seconds continuously over the entire test period, which will be continuously conducted over both winter and summer seasons in 2019.

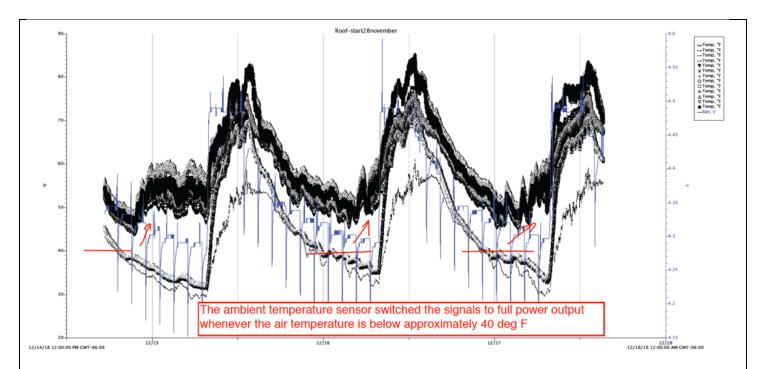


Figure 2 In real-time snowy winter, the closed-course performance and reliability tests of the fully workin prototypes mounted on the roof of M2SEC building. The roof tests will be continuously conducted in 2019 with necessary real-time adjustments.

Figure 3 shows the roof test results recorded between Dec 14 through Dec 17 in the real-time wintery conditions. The surface temperature of each signal light jumped when the air temperature was dropped to 4 deg Celsius (39.2 deg Fahrenheit), because the remote ambient temperature sensor attached to each signal light switched the signal light from derated output to full power output. Based on the laboratory measurement, the actual electric current of the prototype signals, at derated / full power output, were shown below.

- Yellow/green LED driver: 0.422A (derated) /0.844 A (full output) for prototype signal #1, 0.402A/0.837A for signal #2, 0.404A/0.838A for signal #3
- Red LED driver: 0.618A (derated)/1.115A (full output) for prototype signal #4, 0.598A (derated)/1.110A (full output) for prototype signal #5, 0.543A (derated)/1.108A (full output) for prototype signal #6

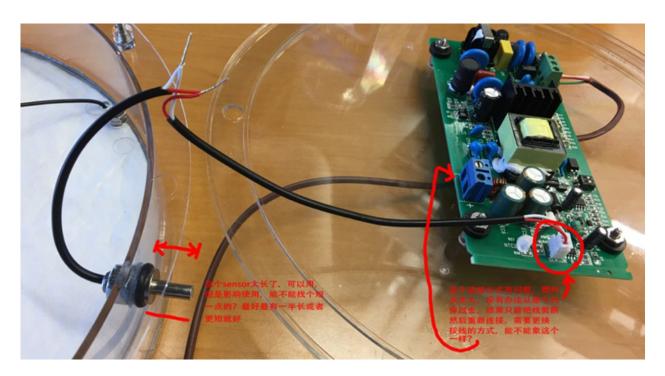


Figure 3 The roof test data recorded in the snowy winter conditions, showing surface temperature jumped when the ambient air temperature was below 4 deg Celsius (39.2 deg Fahrenheit) as designed.

We also conducted thorough tests of those prototype signals in the laboratory for their heating performance to double check the LED driver's performance and reliability, including the switching ambient air temperature sensor attached to the signals. **Figure 4** shows the testing in the cold room which has well controlled ambient temperature and humidity. However, it was found that the switching temperature was not always at 4 deg Celsius (39.2 deg Fahrenheit) as designed. The actual switching temperature of the sensor was minimum 2.6 deg Celsius, maximum 3.4 deg Celsius, with large deviation. This is not acceptable. In addition, the wiring of the ambient air temperature sensor to the PCB board has some problems, which prevents installation of the sensor without cutting the wires, as shown in **Figure 5**. As a results, we have requested the LED driver company to make improvements.

Figure 4 The tests of the fourth generation of prototype signals in the cold room, to double check the switching performance of the ambient air temperature sensor attached to each signal.

Figure 5 The switching temperature sensor attached to each signal has some problems of wiring, need improvement.

We also tested the performance of the prototypes in chest freezer under extremely low temperature, like we did before, to compare the thermal performance of the fourth generation to the previous generations. The test results are shown in **Table 1**. The test results show that the fourth generation of signals powered by the new LED drivers have appropriate thermal performance similar to previous generations. However, it is necessary to look into the insulation performance of the housing and installation to seek further improvement if possible.

Table 1 Thermal performance of the fourth generation signals compared to previous generations.

Test conditions	Freezer, 3 signa	ls tested together				
Type 2 LED signals	old LED driver	Type 2 insulation				
Ambient Temp	ambient	19.6	Deg F	current		
Surface temp	green	79.1	Deg F	0.841 A	old LED driver	
	Yellow	68.5	Deg F	0.842 A	old LED driver	
	Red	60.3	Deg F	0.823 A	old LED driver	
Temp difference	green	59.5	Deg F			
	Yellow	48.9	Deg F			
	Red	40.7	Deg F			
	'					
Test conditions	Freezer, 3 signa	ls tested together				
Type 2 LED signals	new LED driver	Type 2 insulation				
Type 2 LED signals Ambient Temp	new LED driver Ambient	Type 2 insulation 21.5		current		
			Deg F		new LED driver	
Ambient Temp	Ambient	21.5	Deg F Deg F	0.837 A	new LED driver new LED driver	
Ambient Temp	Ambient green	21.5 76.5	Deg F Deg F Deg F	0.837 A 0.838 A		
Ambient Temp	Ambient green Yellow	21.5 76.5 76.9	Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	
Ambient Temp Surface temp	Ambient green Yellow Red	21.5 76.5 76.9 72.8	Deg F Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	
Ambient Temp Surface temp	Ambient green Yellow Red green	21.5 76.5 76.9 72.8 55 55.4	Deg F Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	
Ambient Temp Surface temp	Ambient green Yellow Red green Yellow	21.5 76.5 76.9 72.8 55 55.4	Deg F Deg F Deg F Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	
Ambient Temp Surface temp	Ambient green Yellow Red green Yellow	21.5 76.5 76.9 72.8 55 55.4	Deg F Deg F Deg F Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	
Ambient Temp Surface temp	Ambient green Yellow Red green Yellow	21.5 76.5 76.9 72.8 55 55.4	Deg F Deg F Deg F Deg F Deg F Deg F	0.837 A 0.838 A	new LED driver	

Test conditions	Freezer, 3 singa	ls tested together	
Type 1 LED signals	new LED driver	type 1 insulation	<mark>n</mark>
Ambient Temp	Ambient	21,3	B Deg F
Surface temp	green	63.8	8 Deg F 0.844 A new LED driver
	Yellow	82.5	5 Deg F 1.108 A new LED driver
	Red	72.	5 Deg F 1.110 A new LED driver
Temp difference	green	42.5	5 Deg F
	Yellow	61.2	2 Deg F
	Red	51.2	2 Deg F
Test conditions	Freezer, 1 signal t	ested each time	
OLD LED signals	old LED driver	old insulation	current
Temp difference	green	55.67	Deg F 0.842 A old LED driver
	Yellow	53.62	Deg F 0.843 A old LED driver
	RED	39.17	Deg F 0.840 A old LED driver
Test conditions	Freezer, 1 signal t	ested alone	
OLD LED signals	new LED driver	old insulation	
Temp difference	green	56.3 D	eg F 0.844 A
	Yellow	71 D	eg F 1.110 A
	RED	48.5 D	eg F 1.110 A
Test conditions	Freezer, 1 signa	l tested each time	
Type 1 LED signals	new LED driver	type 1 insulation	n current
Temp difference	green	55.8	Deg F 0.844 A old LED driver
	Yellow	67.63	Deg F 1.109 A old LED driver
	RED	51.02	Deg F 1.110 A old LED driver

Next, we measured the lighting performance of the fourth generation of the prototype signals at both derated or dimmed and full power output modes when the ambient air temperature is above or below 4 deg Celsius (39.2 deg Fahrenheit). **Tables 3-8** summarize the measurement results, all passed the code requirements (**Table 2**).

Table 2 Lighting performance required by codes and standards.

Peak minimum maintained luminous intensity values, at $\theta_{Vert} = -2.5$ deg and $\theta_{Horiz} = 0$ deg $[\mathbf{I}_{(-2.5,0)}]$, by size and color of the module are:

	I _(-2.5, 0)						
Color	200mm	300mm					
Red	165 cd	365 cd					
Yellow	410 cd	910 cd					
Green	215 cd	475 cd					

Table 1 provides the minimum maintained luminous intensity values for the VTCSH LED Circular Signal, for the range from 12.5 degrees above to 22.5 degrees below the horizontal plane, and from 27.5 degrees left to 27.5 degrees right of the vertical plane, at 5 degree increments.

Minimum Maintained Luminous Intensity Values-VTCSH LED Circular Signal

		Luminous Intensity (candela)								
Vertical	Horizontal		200mm (8-incl	h)	30	300 mm (12-inch)				
Angle	Angle	Red	` '		Red Yellow Green					
	2.5	17	41	22	37	91	48			
+12.5	7.5	13	33	17	29	73	38			
	2.5	31	78	41	69	173	90			
+7.5	7.5	25	62	32	55	137	71			
	12.5	18	45	24	40	100	52			
	2.5	68	168	88	150	373	195			
	7.5	56	139	73	124	309	162			
+2.5	12.5	38	94	49	84	209	109			
	17.5	21	53	28	47	118	62			
	22.5	12	29	15	26	64	33			
	2.5	162	402	211	358	892	466			
	7.5	132	328	172	292	728	380			
-2.5	12.5	91	226	118	201	501	261			
2.3	17.5	53	131	69	117	291	152			
	22.5	28	70	37	62	155	81			
	27.5	15	37	19	33	82	43			
	2.5	127	316	166	281	701	366			
	7.5	106	262	138	234	582	304			
-7.5	12.5	71	176	92	157	391	204			
	17.5	41	103	54	91	228	119			
	22.5	21	53	28	47	118	62			
	27.5	12	29	15	26	64	33			
	2.5	50	123	65	110	273	143			
	7.5	40	98	52	88	218	114			
-12.5	12.5	28	70	37	62	155	81			
	17.5	17	41	22	37	91	48			
	22.5 27.5	8 5	21 12	11 6	18 11	46 27	24			
	2.5	23	57	30	51	127	67			
	7.5	18	45	30 24	40	100	52			
-17.5	12.5	18	45 33	17	29	73	38			
-17.5	17.5	7	16	9	15	36	19			
	22.5	3	8	4	7	18	10			
	2.5	17	41	22	37	91	48			
	7.5	13	33	17	29	73	38			
-22.5	12.5	10	25	13	22	55	29			
	17.5	5	12	6	11	27	14			
	2.5	12	29	15	26	64	33			
-27.5	7.5	8	21	11	18	46	24			
	7.2			••	10	-10				

Note 1: Luminous intensity values for equivalent left and right horizontal angles are the same.

Note 2: Tabulated values of luminous intensity are rounded to the nearest whole value

Table 3 Lighting performance of derated/dimmed RED signal light of the fourth generation

signal light color	red	Wattage	dimmed			
tilting angle	III	uminance i	n lux	Average (lx)	distance(m)	intensity (cd)
0	190.9	190.8	190.9	190.9	2.236	954.3
0.5	194	193.9	194.1	194.0	2.236	969.9
1	196.3	196.4	196.2	196.3	2.236	981.4
1.5	199.6	199.4	199.4	199.5	2.236	997.3
2	202.5	202.6	202.5	202.5	2.236	1012.6
2.5	205.8	205.9	205.7	205.8	2.236	1028.9
3	209.8	209.7	209.7	209.7	2.236	1048.6
3.5	213.2	213.4	213.1	213.2	2.236	1066.1
4	217.4	217.3	217.3	217.3	2.236	1086.6
4.5	220	220	220	220.0	2.236	1099.9
5	222	221.8	221.9	221.9	2.236	1109.4
6	223.8	224	223.6	223.8	2.236	1118.9
7	224.6	224.4	224.2	224.4	2.236	1121.9
8	221.4	221.6	221.3	221.4	2.236	1107.1
9	217.6	217.8	217.7	217.7	2.236	1088.4
10	214.8	214.9	214.6	214.8	2.236	1073.8
20	189.3	189.6	189.4	189.4	2.236	947.1
30	75.2	75.1	75.2	75.2	2.236	375.8
40	17.19	17.17	17.18	17.2	2.236	85.9
50	13.46	13.44	13.42	13.4	2.236	67.2
60	21.66	21.65	21.67	21.7	2.236	108.3
70	10.42	10.37	10.36	10.4	2.236	51.9
	<u> </u>		<u> </u>	I	I	

 Table 4 Lighting performance of derated/dimmed YELLOW signal light of the fourth generation

signal light color	yellow	Wattage	dimmed			
tilting angle	Ille	l uminance ii	n lux	Average (lx)	distance(m)	intensity (cd)
0	425	425	425	425.0	2.236	2124.87
0.5	425	426	425	425.3	2.236	2126.54
1	427	426	426	426.3	2.236	2131.54
1.5	427	427	427	427.0	2.236	2134.87
2	428	428	427	427.7	2.236	2138.20
2.5	427	427	428	427.3	2.236	2136.54
3	427	427	427	427.0	2.236	2134.87
3.5	426	426	426	426.0	2.236	2129.87
4	425	425	425	425.0	2.236	2124.87
4.5	423	424	423	423.3	2.236	2116.54
5	422	422	422	422.0	2.236	2109.87
6	418	418	418	418.0	2.236	2089.87
7	414	414	414	414.0	2.236	2069.87
8	408	408	407	407.7	2.236	2038.21
9	402	402	402	402.0	2.236	2009.88
10	397	397	397	397.0	2.236	1984.88
20	340	341	341	340.7	2.236	1703.23
30	109	109	109	109.0	2.236	544.97
40	30.3	30.4	30.6	30.4	2.236	152.16
50	24.19	24.18	24.18	24.2	2.236	120.91
60	31.9	31.9	31.9	31.9	2.236	159.49
70	30.5	30.5	30.5	30.5	2.236	152.49

Table 5 Lighting performance of **derated/dimmed GREEN** signal light of the fourth generation

signal light color	Green	Wattage	dimmed			
tilting angle	III	uminance i	n lux	average (lx)	distance(m)	intensity (cd)
0	344	344	344	344.0	2.236	1719.9
0.5	348	348	348	348.0	2.236	1739.9
1	350	351	350	350.3	2.236	1751.6
1.5	351	351	351	351.0	2.236	1754.9
2	351	351	351	351.0	2.236	1754.9
2.5	350	350	350	350.0	2.236	1749.9
3	347	347	347	347.0	2.236	1734.9
3.5	344	344	344	344.0	2.236	1719.9
4	342	342	342	342.0	2.236	1709.9
4.5	338	338	338	338.0	2.236	1689.9
5	335	335	334	334.7	2.236	1673.2
6	325	325	325	325.0	2.236	1624.9
7	318	318	318	318.0	2.236	1589.9
8	313	313	313	313.0	2.236	1564.9
9	307	307	307	307.0	2.236	1534.9
10	303	303	303	303.0	2.236	1514.9
20	281.5	281.6	281.4	281.5	2.236	1407.4
30	115.6	115.9	116	115.8	2.236	579.1
40	34.1	34.1	34.1	34.1	2.236	170.5
50	27.7	27.7	27.7	27.7	2.236	138.5
60	36.8	36.7	36.7	36.7	2.236	183.7
70	26.3	26.3	26.3	26.3	2.236	131.5

TPF Program Standard Quarterly Reporting Format- 7-2011

 Table 6 Lighting performance of FULLY powered RED signal light of the fourth generation

signal light color	red	Wattage	full			
tilting angle	Illu	minance in	lux	average(lx)	distance(m)	intensity (cd)
0	377	377	377	377.0	2.236	1884.9
0.5	374	374	374	374.0	2.236	1869.9
1	368	368	368	368.0	2.236	1839.9
1.5	362	362	362	362.0	2.236	1809.9
2	355	355	355	355.0	2.236	1774.9
2.5	352	352	352	352.0	2.236	1759.9
3	347	347	347	347.0	2.236	1734.9
3.5	344	344	344	344.0	2.236	1719.9
4	341	341	341	341.0	2.236	1704.9
4.5	338	338	338	338.0	2.236	1689.9
5	336	336	336	336.0	2.236	1679.9
6	329	329	329	329.0	2.236	1644.9
7	323	323	323	323.0	2.236	1614.9
8	317	317	317	317.0	2.236	1584.9
9	312	312	312	312.0	2.236	1559.9
10	307	308	307	307.3	2.236	1536.6
20	290.6	290.5	290.3	290.5	2.236	1452.2
30	52.8	52.8	52.8	52.8	2.236	264.0
40	27.95	27.96	27.95	28.0	2.236	139.8
50	22.08	22.05	22.03	22.1	2.236	110.3
60	34.4	34.3	34.3	34.3	2.236	171.7
70	16.17	16.16	16.15	16.2	2.236	80.8
	L	<u> </u>	L	ı	I	

 Table 7 Lighting performance of FULLY powered Yellow signal light of the fourth generation

signal light color	yellow	Wattage	full			
tilting angle	Illui	minance in	lux	average (lx)	distance (m)	intensity (cd)
0	825	825	825	825.0	2.236	4124.7
0.5	829	829	829	829.0	2.236	4144.7
1	833	833	833	833.0	2.236	4164.7
1.5	835	835	835	835.0	2.236	4174.7
2	837	837	837	837.0	2.236	4184.7
2.5	838	838	838	838.0	2.236	4189.7
3	839	839	839	839.0	2.236	4194.7
3.5	839	839	839	839.0	2.236	4194.7
4	838	839	838	838.3	2.236	4191.4
4.5	837	837	837	837.0	2.236	4184.7
5	837	837	837	837.0	2.236	4184.7
6	831	831	831	831.0	2.236	4154.7
7	821	821	821	821.0	2.236	4104.8
8	812	811	811	811.3	2.236	4056.4
9	801	802	801	801.3	2.236	4006.4
10	789	788	788	788.3	2.236	3941.4
20	675	675	675	675.0	2.236	3374.8
30	175.6	175.7	175.7	175.7	2.236	878.3
40	59.5	59.5	59.4	59.5	2.236	297.3
50	47.1	47	47.1	47.1	2.236	235.3
60	64.9	64.8	64.8	64.8	2.236	324.1
70	61.6	61.7	61.6	61.6	2.236	308.1

 Table 8 Lighting performance of FULLY powered Green signal light of the fourth generation

signal light color	green	Wattage	full			
tilting angle	Illu	minance in	lux	average (lx)	distance (m)	intensity (cd)
0	562	562	561	561.7	2.236	2808.2
0.5	564	564	564	564.0	2.236	2819.8
1	564	564	564	564.0	2.236	2819.8
1.5	561	561	561	561.0	2.236	2804.8
2	555	555	555	555.0	2.236	2774.8
2.5	551	551	551	551.0	2.236	2754.8
3	548	548	548	548.0	2.236	2739.8
3.5	541	541	541	541.0	2.236	2704.8
4	533	533	534	533.3	2.236	2666.5
4.5	526	526	526	526.0	2.236	2629.8
5	521	521	521	521.0	2.236	2604.8
6	509	510	510	509.7	2.236	2548.2
7	498	498	498	498.0	2.236	2489.8
8	492	492	492	492.0	2.236	2459.9
9	481	481	481	481.0	2.236	2404.9
10	473	473	473	473.0	2.236	2364.9
20	443	443	443	443.0	2.236	2214.9
30	182.7	183	182.6	182.8	2.236	913.8
40	54	54	54	54.0	2.236	270.0
50	43.3	43.3	43.3	43.3	2.236	216.5
60	56.9	56.9	56.8	56.9	2.236	284.3
70	41.3	41.2	41.2	41.2	2.236	206.2

Based on the changes in need of the LED drivers and the appropriate thermal and lighting performance, we need to adjust the plastic housing design to change the sizes of some mounting holes, and also enlarge four mounting rods to make the future installation more secured.

Anticipated work next quarter:

Starting from Oct 1, 2018 till December 31, 2018, we are planning to conduct the following tasks.

- 1. Assemble all improved prototypes to be tested in the field sites.
- 2. When the improved prototypes ready for field tests, we will start identify field test sites and test specifications at each site with the aid of sponsor states.
- 3. Travel to the field for field installation and field test over a whole year with remote monitoring of the field tests.
- 4. Continue roof testing of the prototypes in the closed-setting for continuous improvements.

Significant Results:

As of Dec 31, 2018, we have achieved the following significant results.

- This project was launched in Aug 2016 with six participating states (Kansas, California, Michigan, New Jersey, Wisconsin, and Pennsylvania) and an initial budget of \$240,000. Maryland is expected to officially join the study by the end of this year with additional contribution of three years funding.
- An expert panel meeting was held in early March. Discussions were held on desired specifications of the prototype signals and possible field test sites as well as the field evaluation of the prototypes.
- Necessary equipment, components and insulation materials are being procured to develop and build the
 fully working prototypes of the finalized design and test for their thermal and lighting performance. We
 will continue to order LED drivers, electricity monitors, waterproof security video cameras, other
 mounting accessories and materials, etc., for monitoring the performance of the prototypes in the field
 tests in the upcoming winter season.
- Appropriate color LED modules, which are not available in the market, were designed in-house and custom-made with the aid of the industrial partner.
- Three preliminary prototype signals (Red, Yellow, and Green) of Type 1 have been developed in house, each deploying 26 custom-made color LEDs mounted in an array via "Heat Arrangement of LED Arrays in Low Profile". They are under laboratory testing for improvements.
- Tested the lighting and thermal performance of the preliminary prototypes of the Type 1 signal lights

(Figure 1). Based on the test results, new design with a lot of changes and improvements has been finalized for final products.

- Finalized the design of Type 1 self de-icing LED signals using 96 custom-made mediate-power color LEDs mounted in an array via "Heat Arrangement of LED Arrays in Low Profile". Designed in house and custom-made our own color LED modules (for each color R, G, Y) for making the fully working prototype signals of the first type with the aid of our industrial partner.
- Worked with the factories to optimize the mounting method of the custom-made LED modules on the 3-5 mm thick aluminum MPCB back plate serving as the passive heat exchangers of aluminum alloy for assembly.
- Custom-made three prototypes of the LED signals of Type 1 using 96 custom-made mediate-power color LEDs mounted in an array via "Heat Arrangement of LED Arrays in Low Profile", with regular paint coating, and finished laboratory testing for improvements and optimizations to finalize the design.
- Improved and custom-made three new signal light engines using 96 medium-power LEDs (0.25 Watt each) mounted in an array via "Heat Arrangement of LED Arrays in Low Profile" but with Tin coating (Figure 3) and tested them to improve the heating performance (to make faster heat transfer).
- Finalized the design of the signal lens that adopts a whole piece design with smooth and flat outside surface and integrated with 96 additional custom-made Fresnel lenses sitting inside the signal lens over each LED on the inside surface to focus the light serving as a collimator lens. Based on the testing results, the signal light engines with TIN coating may have superior thermal performance, however, further testing in the laboratory and field is necessary to validate the final choice.
- Identified and started custom-making the Fresnel Lens from HongXuan Optoelectronic company with diameter 15 mm and focal length 6 mm (model # HX-F015006).
- Developed the new whole-piece signal housing, new Fresnel lenses, LED drivers, and other accessories for the Type 1 self de-icing LED signal lights, with the aid of the industrial partner.
- Found and selected a qualified plastic molding company to custom make the three parts of the plastic housing of fully working prototypes of Type 1 signals that deploy 96 mediate-power LEDs via the architecture of "Heat Arrangement of LED Arrays in Low Profile". The new housing will be used for the new LED signal lights.
- The non-provisional patent application for the invention of Type 2 self de-icing signal light was officially approved by the USPTO and issued on Dec 26, 2017, patent No. US 9,851,086 B2.
- Started custom-making and modeling of the signal housing. Three samples were delivered for examinations and laboratory tests for necessary calibrations and further improvements.
- Started custom-making the LED drivers with desired specifications based on our test results. Seven LED drivers were delivered for sample testing.
- The custom-made signal housing is ready for production of products with possible minor adjustments

for field tests in different states. Six improved samples have been delivered and thoroughly tested in laboratory and closed-setting tests on the roof.

- New type of screws for uses in the signal housing are self-designed and will be custom-made with Fastenal company.
- A company is custom making two improved and finalized types of LED driver, one for YELLOW and GREEN signal lights (output 0.8 A, maximum 30 Watts), the other for RED signal light (output 1.1 A, maximum 30 Watts). The new LED drivers have temperature Sensor control, when the temperature is above 4 degree Celsius, the LED driver output will be derated (For Yellow + Green LED lights, output current 0.5 A, approximately 17-18 Watts; For Red LED light, output current min 0.6 A, approximately 15-16 Watts.) When the temperature sensor is turned off or failed for any reasons, the power output will be restored to 100% as default.
- The self-deicing signal lights have higher light output than the codes and standards required in all viewing angles from 0 deg to 70 deg as measured, even at the derated power output.
- We have been conducting a closed-course performance and reliability tests of the fully working prototypes mounted on the roof of the University of Kansas engineering complex M2SEC building, in preparation for field tests.
- Seven states have officially participated in this project, including Kansas, California, Michigan, New Jersey, Wisconsin, Pennsylvania and Maryland to provide support.
- A project addendum is proposed to conduct two additional field tests, one in Wisconsin and another one in a test site among Maryland, Pennsylvania, and New Jersey. A budget of \$80,000 for the addendum is proposed to be spent starting on 5/18/2018 until the end of the project
- We have been continuously testing the closed-course performance and reliability of the prototypes previously mounted on the roof of M2SEC building (**Figure 1**). All signal lights were powered by the signal controller cabinet with real signaling time cycles (in a cycle length of 90 seconds, Red signal light ON for 50 seconds, Green signal light ON for 35 seconds, and Yellow signal light ON for 5 seconds. The temperature data were recorded every 10 seconds continuously over the entire test period, which will be continuously conducted over both winter and summer seasons in 2019.
- We have designed and custom made new types of screws (**Figure 3**, the bottom pictures) to improve the connection strength of the screws integrated with the plastic housing. This type of screws are finalized products to be used in all finalized plastic housing.
- We have designed and custom made two types of LED drivers, as shown in **Figure 4**, including one type of custom-made LED driver for **red signal light** (input: 100-240 VAC, output: 0.6-1.1 A, max 30 W), and a second type custom made LED driver for **green/yellow signal light** (input: 100-240 VAC, output: 0.5-0.8 A, max 30 W). Both types of LED drivers are now integrated with a remote temperature sensor (**see Figure 4**) for controlling the power output in light of the ambient air temperature. An on/off switch is designed for temperature controls in winter and summer modes which could override the operation of the temperature sensor.
- We have accordingly improved and finalized the plastic housing of the fully working prototype signals

of Type 1 with changes/improvements listed below, with assist of the plastic molding company — Eco Molding. Eco Molding company has custom made seven samples (**Figure 5**) of the finalized new plastic housing for validations tests before actual product production.

- We have produced 60 pcs of the finalized LED engines with the aid of the industrial partner (**Figure 6** a), ready for the upcoming field tests.
- We have also updated and custom made 60 pcs of glass disc (**Figure 6b**) which have four small mounting holes removed on the edge (the original glass disc had 8 mounting holes).
- We also custom made plastic mounting bars (**Figure 6b**) for mounting the glass disc to the LED light engine.
- We are working on getting improvement on custom-made Fresnal lens model number HX-F0150115 (diameter 15 mm, thickness 2.0 mm, focal length 11.5 mm) to increase tolerance of the thickness (approximately 1.8 2.1 mm) while reducing the unit cost.
- We are in preparation for field tests. Three fully functional prototypes of the fourth generation were mounted on a signal pole on the roof of an engineering building, powered by a traffic control cabinet for closed-course performance and reliability tests.
- Three more fully functional prototypes of the fourth generation were also tested in a well-controlled cold room for the performance of the ambient temperature sensor connected to the LED driver for switching full/derated power output. Based on the test results, we are adjusting the power output of the LED drivers. We are also making minor adjustments of the signal housing for quick assembly of the real products. Results have been used to evaluate the readiness of the prototypes for field tests starting in next quarter.

Circumstance affecting project or budget. (Please describe any challenges encountered or anticipated that might affect the completion of the project within the time, scope and fiscal constraints set forth in the agreement, along with recommended solutions to those problems).

None.