

6th Quarterly Progress Report

Ohio DOT Research

Fifth Quarter Ended on June 30, 2019

"Quarterly Report: State Job #31347"

Quarterly Progress Report

For Quarter Ending:	June 30, 2019
Date Submitted:	July 31, 2019

Project Title:	Structural Design Methodology for Spray Applied Pipe Liners in Gravity Storm Water Conveyance Conduits					
Research Agency:	CUIRE/The	CUIRE/The University of Texas at Arlington				
Principal Investigator(s):	PI: Mohammad Najafi, Ph.D., P.E., F. ASCE, Professor and Director, CUIRE Co-PI: Xinbao Yu, Ph.D., P.E., Associate Professor					
State Job Number:	5501.03		Agreement Number:		31347	
Project Start Date:	20 Decembe	0 December 2017		act Funds Approved:	25 September 2017	
Project Completion Date:	20 Decembe	er 2019	Spent	to Date:	\$373,669.85	
% Funds Expended:	97%	% Work Done:	75%	% Time Expired:	75%	

List the ODOT Technical Liaisons and other individuals who should receive a copy of this report:

- 1. Jeffrey E. Syer, P.E. Ohio DOT
- 2. Brian R. Carmody, P.E. NYSDOT
- 3. Matthew S. Lauffer, P.E. and Charles Smith P.E. NCDOT
- 4. Paul Rowekamp and Aislyn Ryan MnDOT
- 5. Sheri Little PennDOT
- 6. Carlton Spirio FDOT
- 7. Jonathan Karam and Nicholas Dean DelDOT

Quarterly Progress Report

Contents

Schedule of Research Activities Tied to Each Task Defined in the Proposal and Percentage Completion of the Research	4
Comparative Status of Actual Versus Estimated Expenditures	7
Brief Description of the Activities Accomplished by Each Member of the	
Research Team as Listed in the Project Budget	10
Principal Investigator: Dr. Mohammad Najafi	
Co-Principal Investigator: Dr. Xinbao Yu	
Subcontractor: Mr. Ed Kampbell Rehabilitation Resource Solutions, LLC	
Subcontractor: Dr. Firat Sever American Structurepoint, Inc. (ASI)	
Subcontractor: Mr. Lynn Osborn LEO Consulting, LLC	.17
Proposed Work for New Quarter	18
Principal Investigator: Dr. Mohammad Najafi	.20
Co-Principal Investigator: Dr. Xinbao Yu	
Subcontractor: Mr. Ed Kampbell Rehabilitation Resource Solutions, LLC	
Subcontractor: Dr. Firat Sever American Structurepoint, Inc. (ASI)	
Subcontractor: Mr. Lynn Osborn LEO Consulting, LLC	
Implementation (if any):	25
Problems & Recommended Solutions (if applicable):	25
Equipment Purchased (if any):	25
Contacts and Meetings	26
Progress Meeting	.27
Appendix A_Soil Box Test Setup for CMP Control Tests_Photos	28
Appendix B_Soil Box Control Tests Compaction Report	48
Appendix C_SAPL Revised Schedule for Time Extension Request	52
Ohio Department of Transportation 2	

Quarterly Progress Report

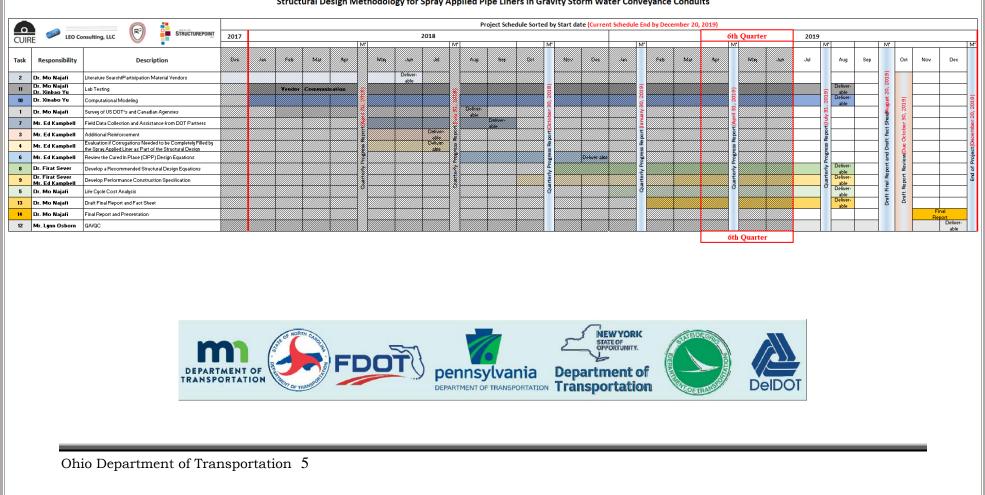
Tables

Table 1: SAPL Research Project Schedule	5
Table 2: Completion Percentage of SAPL Research Project Tasks over the 1st, 2nd, 3rd, 4th, 5th ar	
6 th Quarters	6
Table 3: The 6 th Quarterly Progress Work of SAPL Research Project	
Table 4: Expenditures Summery of SAPL Research Project in the 6 th Quarter	9
Table 5: SAPL Research Project Tasks for 7th Quarter (July 1 through September 30, 2019) 1	9
Table 6: SAPL Progress Meeting during the 6 th Quarter	27

Figures

Figure A 1, (a) and (b): End Wall Installation	9
Figure A 2: Partition Walls Installation	0
Figure A 3, (a) and (b): Sand Delivery	1
Figure A 4: Compaction	
Figure A5: Vibratory Plate Compactor	
Figure A 6: Plastic Sheets Installation	
Figure A 7, (a) and (b): Placing Circular CMPs	
Figure A 8: Instrumentation (Strain gauges)	5
Figure A 9: Surface Preparation for Attaching Strain Gauges	5
Figure A 10, (a) and (b): Attaching Strain Gauges	6
Figure A 11, (a) and (b): Wiring of Strain Gauges	7
Figure A 12, (a) and (b): Preparation of Middle Cell for Placing the Arch CMP	
Figure A 13: Placing Arch CMP	
Figure A 14: Physical Protection of Strain Gauges by Aluminum Tape	0
Figure A 15, (a) and (b): Partition Walls Opening and Wiring4	-1
Figure A 16: 3 CMPs inside the Soil Box	
Figure A 17: Completion the Installation of Partition Walls and Placing Plastic Sheets	.3
Figure A 18: Sand Cone Test and Nuclear Density Measurement	.4
Figure A 19: Inside View of CMPs for Control Test	.4
Figure A 20: Instrumentation (LVDTs, CDSs and Cameras) Inside the Pipe	.5
Figure A 21, (a), (b) and (c): Data Acquisition System	6
Figure A 22: Actuator Control Station	
Figure A 23: Live View from 3 Cameras inside the Pipe 4	.7
Figure B 1: Plan View of Arch CMP Cell and Location of Nuclear Density Measurements	
Figure B 2: Compaction Rate of Arch CMP Cell in Different Layers	.9
Figure B 3: Plan View of Invert-cut Circular CMP Cell and Location of Nuclear Density Measurements5	0
Figure B 4: Compaction Rate of Invert-cut Circular CMP Cell in Different Layers	
Figure B 5: Plan View of Intact Circular CMP Cell and Location of Nuclear Density Measurements5	
Figure B 6: Compaction Rate of Intact Circular CMP Cell in Different Layers	1

Quarterly Progress Report


Schedule of Research Activities Tied to Each Task Defined in the Proposal and Percentage Completion of the Research

Quarterly Progress Report

Table 1: SAPL Research Project Schedule

Structural Design Methodology for Spray Applied Pipe Liners in Gravity Storm Water Conveyance Conduits

Quarterly Progress Report

Table 2: Completion Percentage of SAPL Research Project Tasks over the 1st, 2nd, 3rd, 4th, 5th and 6th Quarters

Structural Design Methodology for Spray Applied Pipe Liners in Gravity Storm Water Conveyance Conduits								
TEXAS ARLINGTON								
	Task Description	Percentage Completed by the end of:						
Task Number		1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	5 th Quarter	6 th Quarter	
Number		Dec 2017 through Mar 2018	Apr 2018 through Jun 2018	Jul 2018 through Sep 2018	Oct 2018 through Dec 2018	Jan 2019 through Mar 2019	April 2019 through Jun 2019	
1	Survey of US DOT's and Canadian Agencies	29%	71%	100%	100%	100%	100%	
2	Literature Search/Participation Material Vendors	57%	100%	100%	100%	100%	100%	
3	Additional Reinforcement	0%	67%	95%	100%	100%	100%	
4	Evaluation if Corrugations Needed to be Completely Filled by the Spray Applied Liner as Part of the Structural Design	0%	67%	90%	100%	100%	100%	
5	Life Cycle Cost Analysis	0%	0%	0%	0%	35%		
6	Review the Cured in Place (CIPP) Design Equations	0%	0%	67%	80%	100%	100%	
7	Field Data Collection and Assistance from DOT Partners	0%	40%	100%	100%	100%	100%	
8	Develop a Recommended Structural Design Equations	0%	0%	0%	20%	30%	80%	
9	Develop Performance Construction Specification	0%	0%	0%	0%	30%	82%	
10	Computational Modeling	19%	38%	57%	60%	65%	70%	
11	Lab Testing	19%	38%	43%	45%	50%	70%	
12	QA/QC	17%	29%	38%	54%	65%	75%	

Ohio Department of Transportation $\, 6 \,$

Quarterly Progress Report

Comparative Status of Actual Versus Estimated Expenditures

Quarterly Progress Report

Table 3: The 6th Quarterly Progress Work of SAPL Research Project Structural Design Methodology for Spray Applied Pipe Liners in Gravity Storm Water Conveyance Conduits R² STRUCTUREPOINT UNIVERSITY OF LEO Consulting, LLC CUIRE TEXAS ARLINGTON Percentage of Number Actual Amount Total Duration **Budgeted** Percentage Percentage Task Completion **Task Description** Completed of Total **Completed This Completed this** Duration Amount Based on Budget (%) **Ouarter** (\$) (Months) (Months) (\$) **Ouarter** (%) Schedule (%) Survey of US DOT's and Canadian 7 7 100 0 0 \$25,751 6.44 1 Agencies Literature Search/Participation Material 2 7 7 100 0 0 \$21,875 5.47 Vendors 3 Additional Reinforcement 3 0.52 100 3 \$2,100 0 0 Evaluation if Corrugations Needed to be Completely Filled by the Spray Applied \$3,900 0.97 100 0 0 4 4 4 Liner as Part of the Structural Design 5 Life Cycle Cost Analysis 8 6 \$29,123 7.28 75 38 \$9,417.60 Review the Cured in Place (CIPP) Design 6 5 6 \$13,751 3.44 100 0 0 Equations Field Data Collection and Assistance from 5 0 7 5 \$26,752 6.69 100 0 DOT Partners Develop a Recommended Structural Design 8 8 10 \$34,081 8.52 80 30 \$4,455.45 Equations **Develop Performance Construction** 9 9 \$27,392 82 27 \$4,010.00 11 6.85 Specification **Computational Modeling** 18 \$52.039 90 \$7.805.85 10 20 13 15 18 90 15 \$19.608.03 11 Lab Testing 20 \$67.001 16.75 QA/QC 24 18 2.00 75 13 \$1.300.00 12 \$8,000 Draft Final Report and Fact Sheet 13 7 Not Started \$88,270 0 0 22.07 0 14 **Final Report and Presentation** 3 Not Started Total \$400,034 100 \$46,596.93 _

Quarterly Progress Report

Table 4: Expenditures Summery of SAPL Research Project in the 6th Quarter Structural Design Methodology for Spray Applied Pipe Liners in **Gravity Storm Water Conveyance Conduits** Summary of Expenditures for the 6th Quarter (April through June 2019) **Sum Amount Description Salaries and Benefits Students Salaries and Benefits** \$16,431.6 Faculty Salaries will be Paid During Summer Months \$2,908.08 **Subtotal** \$19,339.68 **Partner Companies** \$8,465.35 American Structurepoint, Inc. **Rehabilitation Resource Solutions** -LEO Consulting \$1,300.00 **Subtotal** \$9,765.35 **Supplies** USB Extension Cables, Screw Terminal Adapter, Mask and Gloves, Power Adapter Kit, Water Proof LED Light, Cameras, Duct Tape, Power Switches and \$9,557.88 LEDs, Hex Bolt, Extension Cable (5 ft), Mobil DTE 25 Hydraulic Oil **Subtotal** \$9,557.88 **Other Indirect Costs** \$7.874.02 Indirect Costs Total \$46,596.93

Quarterly Progress Report

Brief Description of the Activities Accomplished by Each Member of the Research Team as Listed in the Project Budget

Quarterly Progress Report

Principal Investigator: Dr. Mohammad Najafi

Task 5: Life Cycle Cost Analysis

- Performed a literature review of the life-cycle cost of CIPP and Sliplining.
- Determined the equation to convert all associated costs within the life span of the SAPL, CIPP, and Sliplining projects to the net present value.
- Identified the factors which have major impacts on the environmental and social costs of the SAPL, CIPP, and Sliplining.
- Determined the program to calculate the social costs of underground and infrastructure projects.
- Trained to work with SimaPro software to evaluate the environmental cost of the projects.
- Collected data and information from several open-source websites of different states for SAPL, CIPP, and Sliplining projects from 2010 to 2019.
- Collected SAPL, CIPP, and Sliplining data from 7 participating DOTs.

Task 11: Laboratory Testing

a) Soil Box Test Setup

- Designed, fabricated and installed the channel supports for partition walls.
- Designed, constructed and installed wooden end wall.
- Transported soil from depot to the CURE laboratory.
- Installed a sump pump at the bottom of the soil box.
- Placed a gravel layer at the bottom of the soil box to provide a leveled base.
- Covered the gravel layer at the bottom of the soil box with a plastic sheet to prepare an isolated surface.
- Sprayed a layer of oil to the concrete wall and placed a layer of polyethylene sheet to eliminate the friction.
- Designed, constructed and installed lower section of the wooden partition walls.
- Placed and compacted the foundation layer using concrete sand.
- Placed intact circular, invert-cut circular, and invert-cut pipe arch into the soil box.
- Installed strain gauges and earth pressure cells.
- Backfilled all cells with 2 passes of vibratory compactor at every eight inches.
- Excavated all cells due to high compaction and replacing the soil without any compaction.

Quarterly Progress Report

- Measured the compaction rate by nuclear density measurement gauge (operated by HVJ) near the north and south ends of the pipe in both the east and west sides after each lift, for all 3 cells.
- The readings of density gauge testing showed the average density of 82%, 87% and 91% for invert-cut circular CMP, invert-cut arch CMP and intact circular CMP soil box setups respectively.
- Added a 1 ft. layer of gravel at the top to prevent soil failure.
- Conducted a literature search on soil box test loading rate.
- Prepared a summary report of loading rate in previous similar pipe testings and sent out to participating DOTs and consulting partners for their comments and recommendations on load rate.

b) Instrumentation

- Designed positioning of strain gauges, LVDTs, CDSs and Cameras.
- Calibrated the LVDTs and CDSs.
- Developed a data acquisition system for strain gauges, LVDTs, CDSs and cameras.
- Installed StrainSmart, digiCam and GL220_820APS Software.
- Developed a digital image correlation (DIC) system and tested.
- Installed strain gauges, LVDTs, CDSs and cameras.
- Tested different setup for the LVDT and CDS.
- Designed lighting for inside of the pipe.
- Designed and installed of the wirings.

Participation in the Meetings during Conferences, Internal Meetings, Progress Meetings

- Attended three monthly progress meetings with DOTs.
- Held internal meetings with CUIRE team and research partners (Dr. Xinbao Yu, Dr. Firat Sever, Mr. Ed Kampbell and Mr. Lyn Osborn).

Quarterly Progress Report

Co-Principal Investigator: Dr. Xinbao Yu

The following are the tasks performed this quarter:

Task 10: Computational Modeling

• Prepared the CMP arch model.

Task 11: Laboratory Testing

Contributed with CUIRE research team on:

a) Soil Box Test Setup

- Construction and installation of wooden partition walls and wooden end walls.
- Adding a gravel layer at the bottom of the soil box and covering with a layer of plastic to prevent water from rising into the test setup.
- Placing and compacting the foundation layer of concrete sand.
- Placing intact circular, invert-cut circular, and invert-cut pipe arch into the soil box.
- Backfilling all cells with compaction at every eight inches.
- Talking with representatives from HVJ and Braun Intertec to have them send technicians for measuring field density using Nuclear Density Gauge.
- Excavation all cells to below the haunch levels due to high compaction and replacing the soil without any compaction.
- Adding a 1 ft. deep layer of gravel at the top.

b) Instrumentation

- Installation of strain gauges at the central cross-section for all CMPs.
- Installation of earth pressure cells at invert, springline and crown levels.
- Installation of cameras and setting up a remote operation to take regular pictures of the test setup and backfilling.
- Multiple communications with micro measurements (MM) to check the status of cable displacement sensors (CDS).
- Checking the LVDTs from Omega Engineering in addition to CDS from MM.
- Figuring out the necessary data acquisition system for use with the LVDTs.
- Communicating with Omega Engineering to obtain the quote and purchase 3 LVDTs.
- Performing sensor calibration for LVDTs and cable displacement sensors.
- Preparing drawings for installing the LVDTs and CDS inside the CMPs.
- Checking the compatibility of the cameras with the remote operation software for installation inside the CMP.

Quarterly Progress Report

c) Nuclear Density Gauge Testing

- Day 1: Measurement by the first technician from HVJ on Cell 1 (CMP with removable invert).
 - The standard count of the density gauge was taken in the soil box, with the test block placed above the concrete sand backfill in cell 2.
 - Measurements were taken near the north and south ends of the pipe in both the east and west sides after each lift. The readings showed an average density close to 82%.
- Day 2: Measurement by the second technician from HVJ on Cell 2 (Arch pipe with removable invert)
 - The standard count of the density gauge was taken outside the laboratory and the test block was placed over a concrete surface.
 - Measurements were taken near the north and south ends of the pipe in both the east and west sides after each lift. The readings showed an average density close to 87%.
- Day 3: Measurement by technician from Braun Intertec on Cell 3 (Intact CMP)
 - The standard count of the density gauge was taken in the soil box, with the test block placed above the concrete sand backfill in cell 2.
 - Measurements were taken near the north and south ends of the pipe in both the east and west sides after each lift. The readings showed an average density close to 91%.

Quarterly Progress Report

Subcontractor: Mr. Ed Kampbell Rehabilitation Resource Solutions, LLC

Task 3 – Review of Additional Reinforcement

Began final update of the report based on the additional comments received from DOTs.

Task 4 – Evaluation if Corrugations needed to be Completely Filled by the SAPL as Part of the Structural Design

Began final update of the report based on the additional comments received from DOTs.

Task 6 – Review the Cured in Place (CIPP) Design Equations

Update the report based on the additional comments received from DOTs.

Task 9 – Develop Performance Construction Specifications

No work will be performed on this task as it is no longer an RRS assigned task.

Quarterly Progress Report

Subcontractor: Dr. Firat Sever American Structurepoint, Inc. (ASI)

Subcontractor American Structurepoint, Inc. /Dr. Firat Sever has performed the following tasks in the 6th quarter:

- Attended conference calls with UTA and Ohio DOT.
- Reviewed the cementitious lining approach developed by Ed Kampbell.
- Analyzed beam vs. shell approach for designing cementitious lining.
- Met with cementitious geopolymer vendor on June 11, 2019 to discuss design and testing parameters and to review QA/QC protocol for cementitious liners.
- Conducted additional research and literature review on testing and QA/QC methods for liners. Reviewed cementitious liners specifications from INDOT, WDOT, Toronto, ODOT supplemental specification 833, New Chicago MWRD.
- Met internally at the WEF Collections Systems conference to discuss the project and next steps.

Quarterly Progress Report

Subcontractor: Mr. Lynn Osborn LEO Consulting, LLC

Task 12. QA/QC

As QA/QC Reviewer, much of my work depends upon the work and progress of other team members and items that require quality checks.

Activities for Q6 include:

- Evaluated and responded to participating company questions regarding timing of polymer application. April 25, 2019.
- Reviewed the soil box testing plan, June 15, 2019.
- Attended the conference call on soil box testing plan, June 18, 2019.
- Attended the conference call on soil box loading rates, June 26, 2019.

Quarterly Progress Report

Proposed Work for New Quarter

Table 5: SAPL Research Project Tasks for 7th Quarter (July 1 through September 30, 2019)

Structural Design Methodology for Spray Applied Pipe Liners in Gravity Storm Water Conveyance Conduits						
TEXAS ARLINGTON CONCEPTION CONCEP						
Task Number	Responsibility Task Description			Work to be Co nd of 7 th Quar rough Septem	ter	
			July	August	September	
5	Dr. Mo Najafi	Life Cycle Cost Analysis	To be Continued			
8	Dr. Firat Sever Mr. Ed Kampbell	Develop a Recommended Structural Design Equations	Тс	be Continued		
9	Dr. Firat Sever Mr. Lyn Osborn	Develop Performance Construction Specification	Тс	be Continued		
10	Dr. Xinabo Yu	Computational Modeling	To be Continued			
11	Dr. Mo Najafi	Lab Testing	Control Test to be Completed			
12	Dr. Xinbao Yu Mr. Lynn Osborn	QA/QC	Polymeric SAPL Test to be Started To be Continued			

Quarterly Progress Report

Principal Investigator: Dr. Mohammad Najafi

Task 5: Life Cycle Cost Analysis

- To present life-cycle cost analysis of SAPL at ICPTT 2019 conference in China.
- To combine all collected data and run the analysis.
- To collect data which are needed to evaluate environmental and social costs of SAPL, CIPP, and Sliplining projects.
- To develop a model and calculate the construction cost of SAPL projects.
- To validate the SAPL construction cost model with existing data.
- To use SimaPro software and evaluate the environmental cost of the SAPL projects.
- To analyze social costs of the SAPL projects by using social cost calculator (SCC) program.

Task 11: Soil Box Testing

- To complete soil box control tests of CMPs.
- To perform data analysis on the results of soil box control tests of CMPs.
- To prepare journal papers out of the results of soil box control tests of CMPs.
- To prepare the soil box test setup for polymeric SAPL material from Sprayroq.

Quarterly Progress Report

Co-Principal Investigator: Dr. Xinbao Yu

Planned Task for the Next Quarter

Following are the tasks planned for the coming quarter:

Task 10: Computational Modeling

- To calibrate and verify the FEM model of bare CMPs using the test data from control tests.
- To prepare FEM models for lined CMPs.

Task 11: Soil Box Testing

• To contribute with CURE research team and complete control tests of the CMPs and complete soil box setup for testing of polymeric lined CMPs.

Quarterly Progress Report

Subcontractor: Mr. Ed Kampbell Rehabilitation Resource Solutions, LLC

Task 3 – Review of Additional Reinforcement

Will complete update of the report based on the additional comments received from DOTs.

<u>Task 4 – Evaluation if Corrugations needed to be Completely Filled by the SAPL as Part of the Structural Design</u>

Will complete update of the report based on the additional comments received from DOTs.

Task 6 – Review the Cured in Place (CIPP) Design Equations

Will complete update the report based on the additional comments received from DOTs.

Task 8 – Develop Recommended Design Equations

Will work with Dr. Firat Server to finalize a proposed design analysis method based on existing literature and the results of the product testing being conducted in the UTA load cell.

Quarterly Progress Report

Subcontractor: Dr. Firat Sever American Structurepoint, Inc. (ASI)

The following tasks are to be performed by American Structurepoint/Firat Sever in the next quarter:

- To work with Ed Kampbell on establishing the overall design approach with the base equations.
- To modify the current base equations based on experimental data and computational modeling with FEA being performed by UTA.
- To improve the draft specifications with the information gathered from other DOTs and cities work with Lynn Osborn on specification development.
- To attend periodic team conference calls as requested.
- To review any interim work and reports.

Quarterly Progress Report

Subcontractor: Mr. Lynn Osborn LEO Consulting, LLC

Task 12. QA/QC.

QA/QC reviews will continue on design and development planning, inputs and control. This will include general project oversight as required.

Quarterly Progress Report

Implementation (if any):

N/A

Problems & Recommended Solutions (if applicable):

- Request for additional time and fund has been submitted due to changes from service load to ultimate load conditions in the soil box testing and additional field inspection costs.
- Due to rescheduling the soil box testing, the SAPL soil box tests will start in August.

Equipment Purchased (if any):

N/A

Quarterly Progress Report

Contacts and Meetings

Quarterly Progress Report

Progress Meeting

Table 6: SAPL Progress Meeting during the 6th QuarterApril 1 through June 30

No.	Progress Meeting Agenda	Date
15	 Schedule Update Completion of Steel Frame Installation Completion of Actuator Installation Task 9 – Development of Performance Construction Specification (Presented by Dr. Sever) 	April 9, 2019
16	 Schedule Update Soil Box Upodate Minutes of Conference Call with Mr. Chip Johnson and His Team from Sprayroq Mr. Thomas Birnbrich Travel from Ohio DOT to CUIRE/UTA to Visit the SAPL Control Test Updates on Task 5 – Life Cycle Cost Analysis Updates on Additional Budget Request 	May 14, 2019
17	 Schedule Update Soil Box Progress on SAPL Control Test Setup Anticipated SAPL Control Test Date: June 20, 2019 Discussion on Polymeric SAPL Soil Box Test Setup with Mr. Chip Johnson from Sprayroq 	June 11, 2019

Quarterly Progress Report

Appendix A

Soil Box Test Setup for CMP Control Tests Photos

Quarterly Progress Report

(a)

(b) Figure A 1, (a) and (b): End Wall Installation

Quarterly Progress Report

Figure A 2: Partition Walls Installation

(a)

Quarterly Progress Report

(b) Figure A 3, (a) and (b): Sand Delivery

Figure A 4: Compaction

Quarterly Progress Report

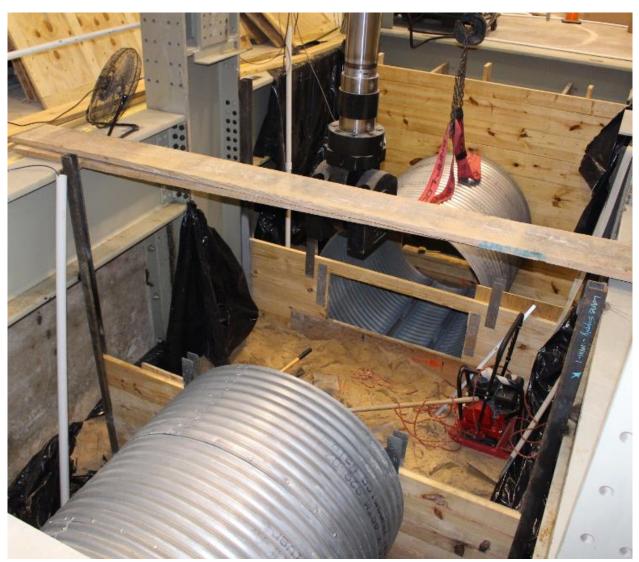

Figure A5: Vibratory Plate Compactor

Figure A 6: Plastic Sheets Installation

Quarterly Progress Report

(a)

Quarterly Progress Report

(b) Figure A 7, (a) and (b): Placing Circular CMPs

Quarterly Progress Report

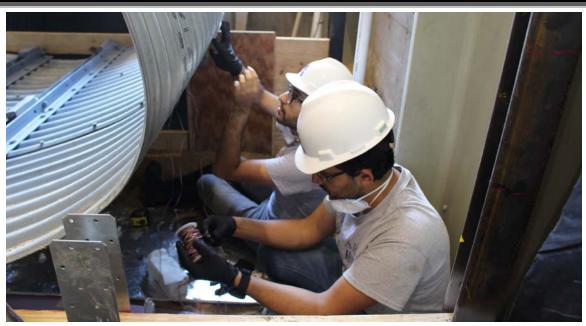

Figure A 8: Instrumentation (Strain gauges)

Figure A 9: Surface Preparation for Attaching Strain Gauges

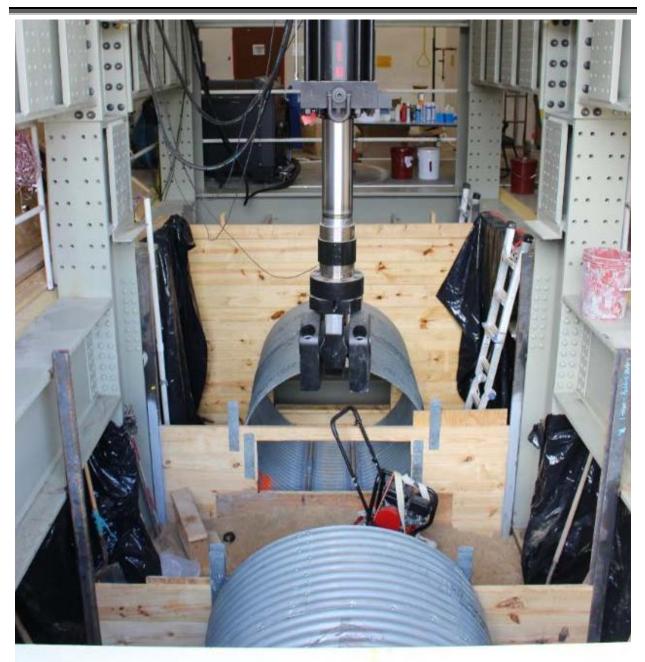
Quarterly Progress Report

(a)

(b) Figure A 10, (a) and (b): Attaching Strain Gauges

Quarterly Progress Report

(b) Figure A 11, (a) and (b): Wiring of Strain Gauges


Quarterly Progress Report

(a)

Quarterly Progress Report

(b) Figure A 12, (a) and (b): Preparation of Middle Cell for Placing the Arch CMP

Quarterly Progress Report

Figure A 13: Placing Arch CMP

Figure A 14: Physical Protection of Strain Gauges by Aluminum Tape

Quarterly Progress Report

(a)

(b) Figure A 15, (a) and (b): Partition Walls Opening and Wiring

Quarterly Progress Report

Figure A 16: 3 CMPs inside the Soil Box

 $Ohio \ Department \ of \ Transportation \ \ 42$

Quarterly Progress Report

Figure A 17: Completion the Installation of Partition Walls and Placing Plastic Sheets

Quarterly Progress Report

Figure A 18: Sand Cone Test and Nuclear Density Measurement

Figure A 19: Inside View of CMPs for Control Test

Quarterly Progress Report

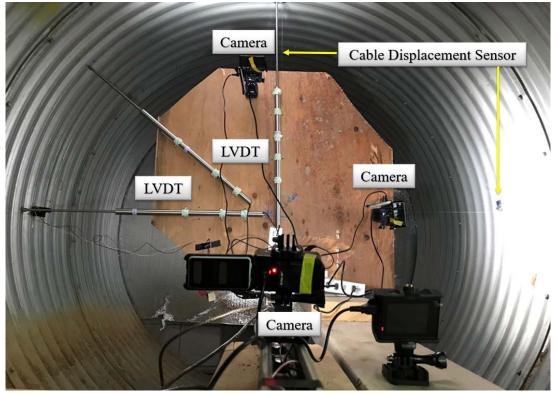
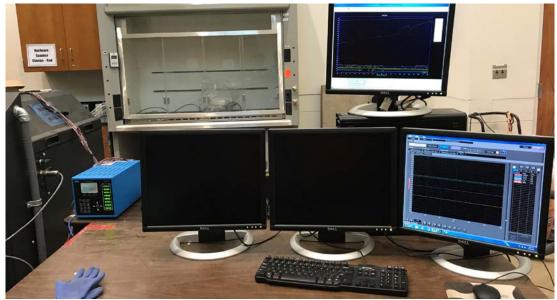
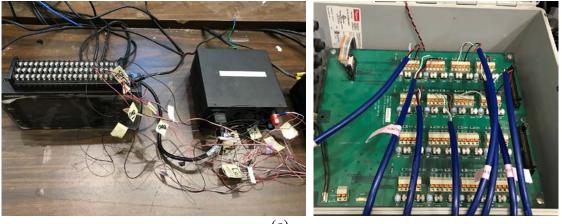



Figure A 20: Instrumentation (LVDTs, CDSs and Cameras) Inside the Pipe


(a)

Quarterly Progress Report

(b)

(c) Figure A 21, (a), (b) and (c): Data Acquisition System

Quarterly Progress Report



Figure A 22: Actuator Control Station

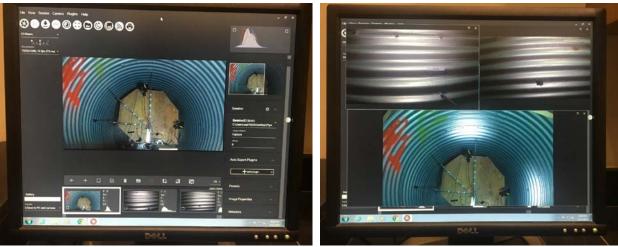


Figure A 23: Live View from 3 Cameras inside the Pipe

Quarterly Progress Report

Appendix B

Soil Box Control Tests Compaction Report

Quarterly Progress Report

The compaction measurement is conducted through a nuclear density measurement gauge. The measured maximum proctor density is 115.2 pcf, obtained from the standard proctor compaction test. The measurements have carried out in 6 layers at two repetitions for both east and west side of the pipe. The measured values for each sets of measurement are demonstrated in the figure bellow.

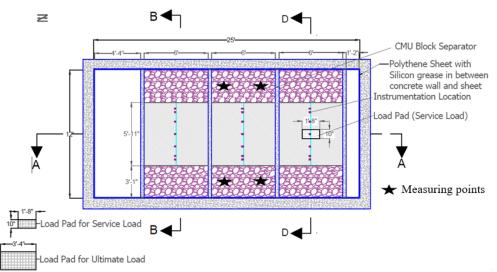
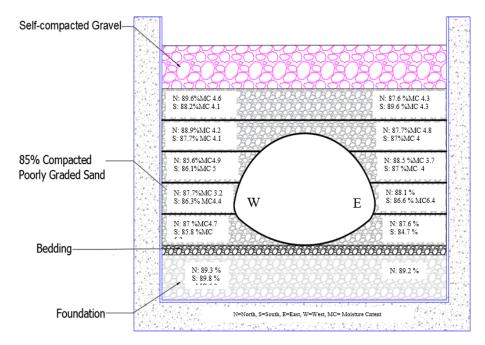
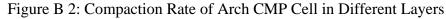




Figure B 1: Plan View of Arch CMP Cell and Location of Nuclear Density Measurements

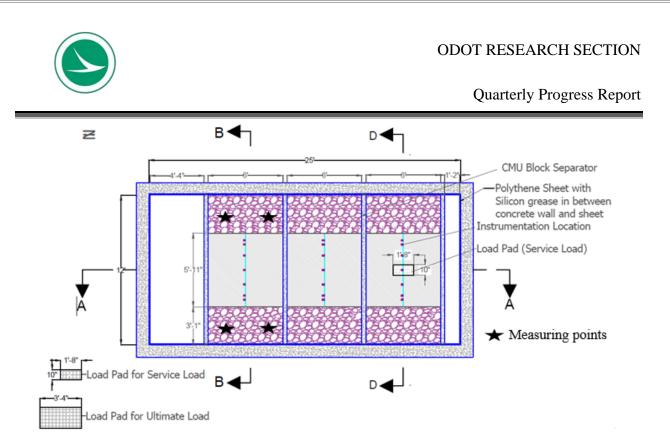


Figure B 3: Plan View of Invert-cut Circular CMP Cell and Location of Nuclear Density Measurements

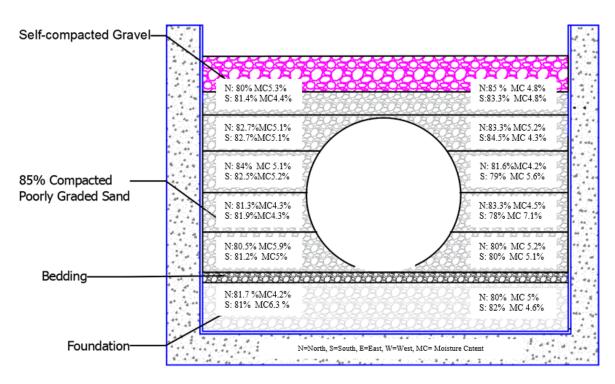


Figure B 4: Compaction Rate of Invert-cut Circular CMP Cell in Different Layers

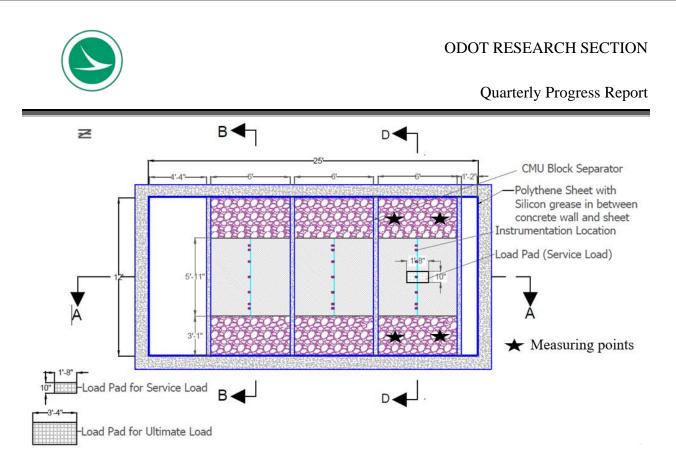
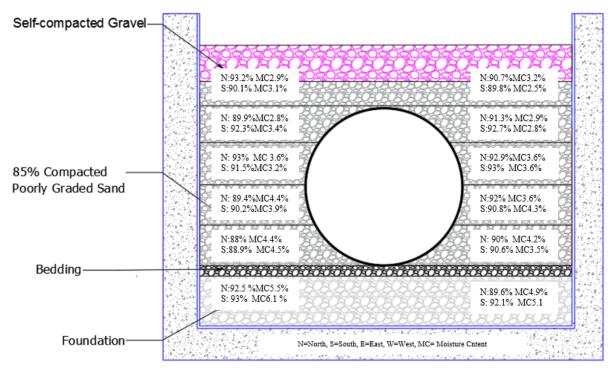



Figure B 5: Plan View of Intact Circular CMP Cell and Location of Nuclear Density Measurements

Quarterly Progress Report

Appendix C

SAPL Revised Schedule for Time Extension Request

٥		•	Project Schedule Sorted by Start date [Extended Schedule End by December 20, 2020]																								
CUIR	LEO Co	onsulting, LLC	Completion						2	019												2020					
coinc		· ·	In					6th Quarter M*			м*		,	M*			м*			М*			M*		м*		
Fask	Responsibility	Description	2017 & 2018	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	June	Jul	Aug	t Sep		Dct N	ov De
	Dr. Mo Najafi	Literature Search/Participation Material Vendors	Delivered																						020		
11	Dr. Mo Najafi Dr. Xinbao Yu	Lab Testing	In-progress	5				6			6						020			5			Delive able	pr-	8		
10	Dr. Xinabo Yu	Computational Modeling	In-progress					0, 20:			, 201			110			31, 2			0, 201			Delive able	5 57 -	ngust	02	
1	Dr. Mo Najafi	Survey of US DOT's and Canadian Agencies	Delivered					rl 30			ly 31						Vie			ul 30			ly 31		et (A	1, 20	
7	Mr. Ed Kampbell	Field Data Collection and Assistance from DOT Partners	Delivered					t (Ap			3						(Janu			t (Ap			3		Shee	e	
3	Mr. Ed Kampbell	Additional Reinforcement	Delivered					epor			lo da			100			port			epor			io da		Fact	900	
4	Mr. Ed Kampbell	Evaluation if Corrugations Needed to be Completely Filled by the Spray Applied Liner as Part of the Structural Design	Delivered					ess R			ess F			au s			s Re			ess R			ess R		Draft	See .	
6	Mr. Ed Kampbell	Review the Cured In Place (CIPP) Design Equations	Delivered					rogn			Progr			818			ogre			rogr			Progr] pue	ew	
8	Dr. Firat Sever	Develop a Recommended Structural Design Equations	In-progress					d y h			arly F	Milestone					y Pre			rty P			Delive able		ort	Revi	
9	Dr. Firat Sever Mr. Ed Kampbell	Develop Performance Construction Specification	In-progress					arte			narte	Milestone					rter			arte			Delive able	BL-	Rep	port	
5	Dr. Mo Najafi	Life Cycle Cost Analysis	In-progress		ļ			ð			ð				Deliver-		Qua			ð			ð		Final		
13	Dr. Mo Najafi	Draft Final Report and Fact Sheet													a ore										Daft	Draft	
14	Dr. Mo Najafi	Final Report and Presentation																									Final
12	Mr. Lynn Osborn	QA/QC																									Deliv
3 4	Provide a Report for Stru	stigate the benefits of incorporating non-metallic tensile reinforcemen stural Capacity of Spray Applied Liner Filled the Corrugated Host	it.				Est	ablish Base	Equation	•					AND OFT	RANGIN						Y	E OF SRTUNITY.	IId	nspo	Itati	JIL
5		nalysis with considering durability of material			-			-	-					F		5	Ĵ				_						
6	To measure and visualize	and the new ASCE design concept for flexible liners including design s e the in-situ deflections, de-bonding, spalling, cracks and holes, corro	sion, pavement sur	face settlements a	nd		Iden	tify Missing	Paramete	ers)				1		oenr	ารуเ		ia	
		ed liners to validate how the structure is performing in agreement with			et		(- L	CPARTN	ICNT OF	INANSP	UNIAL	
8	for structural design of s	pray applied pipe liners in gravity storm water conveyance conduits		• • • • • • •		-	1	Conduct Fie	eld Tests																		
9	the users to modify base				w		-	1		-				DEF	ART	MENI	T OF										
10	presented in Task5 A report documenting the	e mathematical modeling of soil structure system used to validate the			-		C	with Lab	Tests	·				TRA	NSP	ORT		N									
	used to validate the prop	posed cementitious liner design equations of task 4.			-	NO		Revise Equ	uations						_								2		77		
		lanning, Design & Development Inputs, Design & Development Control		ment Output,	1			1						1	ATE OF NORT	W Casolan									OT		
12		C/QA procedures when installing spray applied liners			1			lerify Equat utational M		EM)				· DEP	-									JeiL			
12 12-A	Recommendations for QC						-							1	THEM OF TH	MOTORY											
11 12 12-A 12-B 13	Recommendations for QC	fact sheet						YES		Finalize Eq																	