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Introduction



LCPC activities on pavement design and modeling
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• Contribution to the development and evaluation of French 
pavement design methodology

• Development of models for :
• Low trafic pavements : Non linear behaviour of soils and unbound 

granular materials, prediction of rutting

• Bituminous pavements  : visco-elastic behaviour, fatigue, visco-plastic 
behaviour (rutting)

• Rigid pavements : study and modelling of reflective cracking

• Airfield pavements ; impact of multi peak loading

• Design of innovative pavement structures



Presentation of LCPC APT facilities
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Fatigue test track – large circular 
test track (pavement length 120 m)

“FABAC” Machines : mobile 
machines – simulation of full 
wheel loading on small length (2m)



LCPC Fatigue test track
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• Circular outdoor facility, built in 1984
• Track width up to 6 m  - length 122 m (radius 19.5m)
• Radius of rotation : adjustable from 15 m to 20 m
• Maximum speed 13.5 rpm (100 km/h at radius 19.5 m)
• Simulation Transverse wandering of real traffic can be 

reproduced
• Various types of loads from 8-ton single-axle to 30-ton 

multiple-axle (only a half-axle per arm)
• 3 test sites - one including a water table 

control system (pumping station)

Experiments performed in partnership with
Road authorities, public or private companies,
European research program



Use of APT for pavement engineering
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Performance models – Two main different 
approaches, almost disconnected today ?

• Extensive survey campaigns of road networks (ex: at national scale) & 
global statistical approach

• Tool: statistical analysis of broad data base, including equivalent 
pavement structures at different ages and supporting different traffic 

• Efficient way to derive “evolution laws” for PMS (maintenance & 
reinforcement  planification) on standard pavement techniques

• Local mechanistic approach on test sections, looking more deeply to the 
nature of pavement materials and structures and to their behaviors

• Tools: Real loading test, APT, laboratory testing, constitutive laws, 
structural models

• More “introspective” approach ; specially recommended for innovation 
testing (materials, structures)



Advantages and limits of APT
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Advantages
• Well controlled pavement construction and experimentation conditions 

(load, traffic, temperature,…)

• Internal instrumentation and detailed monitoring of pavements

• Response in relatively short time owing to the acceleration of traffic

• Possibility to make comparative tests

• Good quantitative knowledge of the resilient behavior of the structures    
and damaging mechanisms 

Limits

• Not representative of real traffic & climatic variations

• No long term ageing of materials

• Obtained results more comparative than intrinsic



Important rule for APT success
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• Build a pavement dedicated to the distress to be studied and try
not to mix pavement distresses

• Examples :
• permanent deformation of bituminous layers 

use hydraulically bound base and sub base
• fatigue of bituminous materials

avoid using surface layer that could hide bottom to top cracks
• ….



Examples of APT experiments and their 
impacts



Experiment
on fatigue behaviour



Objectives of the experiments
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• Comparison of fatigue behaviour of different bituminous materials, with 
different binders

- in the laboratory, using different fatigue tests
- in pavements

• Evaluation of the French fatigue design approach for bituminous 
pavements

• Determination of shift factor to be applied to High Modulus Mixtures 
(French EME)

• 3 full scale experiments on the LCPC test track (between 1990 and 
1994)



Third “fatigue” experiment
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4 structures : 8 or 10 cm thick bituminous layer
40 cm thick granular base
clayey subgrade : E = 30 to 40 MPa

3 bituminous materials:
BBB : Bituminous concrete with 50/70 grade bitumen (reference)
BBS : Bituminous concrete with 50/70 polymer modified bitumen
EME : high modulus bituminous mix, with 10/20 grade bitumen 

2 structures – 8 and 10 cm thick

Loading conditions :
65 kN dual wheel load, 72 km/h
3.2 million loads applied



In situ performance of the 4 structures
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Laboratory fatigue tests
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5 different test procedures

Procedure Type of loading



Fatigue design method
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Criterion on maximum tensile strain :

( ) ( ) k10NEf,
b6

6adt ⋅⋅θε=ε

ε6(θ,f) : Strain leading to failure for 106 cycles,
depending on temperature θ and frequency f

NE : number of standard axle loads
b : slope of the fatigue line
k : shift factor, taking into account the risk of failure, the 
bearing capacity of the soil, the difference between the model 
and observed pavement behaviour

Predicted pavement life: ( )
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Comparison of design predictions and field performance
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Calculation of shift factor k 
(k = 1     exact prediction of pavement life) ( )

b1

6

t6
f,k

10NE ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θε⋅

ε
⋅=

k

Fatigue test procedure S1
BBB

S2
BBs

S3
EME 8 cm

S4
EME 10cm

3 – strain control   
Continuous 

1,58 1,28 1,14

0,8

1,10

1,20

5 – strain control, 
with rest periods 

1,04 1,03 0,8

6 – stress control, 
continuous 

3,21 2,57

10 – stress control, 
with rest periods 

1,73 1,49 1,08



Conclusions – “fatigue experiments”
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• Large differences in fatigue life predictions from different fatigue test 
procedures, 

• Fatigue tests with rest periods seem more representative 
of in situ behaviour

• For the high modulus material (EME), the stress controlled fatigue test 
seems more representative of in situ behaviour. 

more research needed on intrinsic characterisation of fatigue in 
laboratory

• Correction between in situ and lab behaviour dependent on the type of 
material (BB/EME) 

Shift factor for EME = 1,0

[De la Roche et al, TRB 94, ISAP 98] [Rivière et al, ISAP 98



Airbus Pavement Experimental Program



Airbus experimental program on flexible pavements – 1998-2003
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30m 30m 30m 30m

Section D
AC 8 cm

BAC24 cm
UGA 1.40 m

CBR 3

Section C
AC 8 cm

BAC 24 cm
UGA 0.60 m

CBR 6

Section B
BBSG 8 cm
GB3 24 cm
GNT 20 cm
Sol CBR 10

Section A
BBSG 8 cm
GB3 24 cm
Sol CBR 15



Objectives of the Airbus experimental program
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Tests on 4 instrumented pavement structures with soils of different 
bearing capacity (CBR 3 to 15)

Simulation of loads of different 
aircrafts , using a load simulator

Objectives :

Study of the behaviour of flexible airfield pavements under heavy 
aircraft loading conditions

Evaluation of the possibility of applying  the French road pavement 
design method to flexible airfield pavements



Observed pavement performance
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Main mode of distress of the flexible pavements = rutting
No fatigue cracking - densification of the bituminous layers 
under heavy loading
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Linear elastic calculations (ALIZE Software)
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Results of linear elastic calculations
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Good prediction of vertical strains in granular layers and subgrade

Poor prediction of maximum tensile strains at bottom of bituminous 
layers :
• Maximum values poorly simulated

• Discordance in directions of 
maximum tensile strains εt:

Measurements : εt transversal > εt longitudinal 

Calculations : εt longitudinal > εt transversal

⇒ Attempt to take into account viscoelastic behaviour

A
Cε
trans
.

ε
long
.



Visco-elastic model for bituminous materials
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HUET - SAYEGH MODEL (1965)
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Finite element model : module CVCR of CESAR-LCPC
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Modelling of a pavement under moving wheel load (in 3D)

Hypotheses : Constant speed V 

Constant properties along x

V z
y

O' O     x

σ(  , y, z) ε(X, y, z)

X’

V z
y

O' O     x

σ(  , y, z) ε(X, y, z)

Calculation in the referential of the moving load (O’, X’, y ,z)      X’ = x +Vt
Static mechanical problem - no time steps
Modification of the visco -elastic law : becomes a non - local law

Models available in CVCR :
Linear and non linear elasticity ( Boyce model, k-θ model)
Huet-Sayegh visco-elastic model 
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First conclusions of the Airbus experiment
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Main mode of distress of the flexible pavements = rutting
No detectable fatigue of bituminous layers, despite high tensile strains

Modelling of resilient behaviour

- Reasonable prediction of vertical strains in subgrade with 
linear elastic calculations.

- Visco-elastic modelling necessary to predict correctly 
strains in bituminous layers

Modelling of fatigue
- Need to adapt the fatigue tests to aeronautical loading conditions

(high strain levels ≈ 400 µstrain, lower number of cycles (104))

Rutting : 

Need to develop suitable design criteria and specifications for resistance 
to rutting of materials (bituminous and unbound)



Use of APT for pavement structure 
innovation 



Grave-Mousse test at LCPC’s APT facility
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Grave-Mousse ®
- new material for treated road bases                            
developed by EJL Contractor (now EUROVIA)                       
since about 10 years. 
- bitumen-foam treated aggregates,                                        
used for new pavement                                           
as for overlay construction

- New pavement structure and innovative concept using Grave-Mousse in 
the middle part of a three-layer structure design model to be defined 
and validated
- In overlay, functioning and endurance of this new material under heavy 
traffic to be checked.



Grave-Mousse test at LCPC’s APT facility
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Experiment with LCPC’s APT facility :

• Partners : Private contractor EJL
• Fatigue test performed from July 1995 to March 1996
• 3 overlays and 1 new pavement, 28 m long x 3.5 m width
• 2.87 millions single axle load from 45 kN to 85 kN /twinned 

wheels, equivalent to 4.3 millions of the French standard load 
(130 kN/single axle) ie about 15 years  of service on average 
trafic national network

• Load speed: 
- 44 km/h until 70 000 loadings (consolidation stage)
- 68 km/h for all the other loadings.



The 4 structures tested
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BFTA 10 cm
Cracked AC 7cm

UGA 40 cm

Spoilt micaschist 2 m

Overlay structure 3

AC 8 cm (reference)
Cracked AC 7cm
UGA 40 cm

Spoilt micaschist 2 m

Overlay structure 1

HMAC 6 cm
BFTA 10 cm
HMAC 6 cm

Spoilt micaschist 2 m

New pavement structure 4

ESA 10 cm
Cracked AC 7cm
UGA 40 cm

Spoilt micaschist 2 m

Overlay structure 2

Rotation radius of loads : 18 m

3.5 m

AC : asphat concrete BFTA : bitumen-foam treated aggregates
ESA : emulsion stabilised aggregates HMAC : high modulus asphalt concrete
UGA : untreated graded aggregates



Cracking and rutting vs traffic
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New structure 4: dammage mechanism
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Typical horizontal strains profiles measured under the 65 kN standard load  
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New structure 4: dammage mechanism
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Trench in the new structure 4 at the end of the experiment

HMAC 6 cm

BFTA 10 cm

HMAC 6 cm

Subgrade (spoilt micaschist)

Failure area
horizontal shear crack

Wheel path



Numerical modeling: main results
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Theoritical modeling:
• multilayer elastic model (Burmister). Young moduli are back-

calculated from deflections, curvature radii and strains measured.
Young modulus (15°C, 10Hz)

- reference AC : 10 000 Mpa
- BFTA : 4 000
- ESA : 2 500
- Cracked AC : 2 000

• Fatigue behavior evaluated from fatigue laboratory tests, and 
calibrated by ajustement with experimental results.

• Scattering of the fatigue parameters are taken into account, 
leading to a probabilist determination of the pavement dammage
due to the traffic.

• The theoretical risk of failure is assimilated to the cracking extent.
• New structure 4 : shear failure plane is modelized by a low 

modulus thin layer (2 cm thick, at 2 cm above the BFTA/HMAC 
interface, Young modulus 750 MPa).   



Numerical modeling: main results
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New structure 4 : internal shear en tensile stresses

Shear stresses at the midle
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Numerical modeling: main results
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Measured and calculated evolution of cracked area
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General Conclusions
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APT is a useful tool for :
• Identification of pavement deterioration mechanisms, and suitable 

models 
• Validation of models
• Experimentation of innovative structural design
• Improvement of laboratory test procedures
But validation on real pavement sections is also necessary

Recent research at LCPC on design /performance models 
focuses in particular on :

• Prediction of rutting

• Design of airfield pavements or special pavements (ex: industrial 
platforms) subject to heavy, complex loads

• Viscoelastic behavior of bituminous pavements and development 
softwares based on analytical models such as Viscoroute-LCPC.



References – Research on pavement modelling
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•Bitumen Cracking modeling (Nguyen, 2006) (Chailleux, 
ICAP2006)

•Damage modeling (Bodin, 2002) (Bodin et al., 
ASCE2004), ….

•Visco-elastic structural model (Duhamel et al., 
BLCPC2005) (Chabot et al, ICAP2006), …

•Cracking structural model (Tran, 2004) (Chabot et al., 
BLPC2005), ….

•Visco-plastic modeling (Nguyen, 2006) (Nguyen et al., 
ICAP2006), …

•Non linearity modeling for GNT and soil material (El 
Abd, 2006) (Hornych et al., RMPD2006 or 2007) …



Additionnal not presented

Model for the prediction of rutting in 
unbound pavement layers

Developed in European project SAMARIS 
(2002-2006)



SAMARIS
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• SAMARIS : European project of the 5th PCRD
• 2002-March 2006
• Pavement and Structure Streams

• Task 5 : Development of a performance-based approach for the prediction of 
rutting of unbound pavement materials

• Selection of permanent deformation models for unbound granular 
materials

• Development of a structural method of calculation of rutting of 
unbound pavement layers

• Comparison with results of ALT full scale pavement experiment 



Laboratory study of permanent deformations
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Test method : cyclic triaxial test 
Advantages : realistic simulation of « stress paths » due to traffic loading

Test procedures
Test equipment

p = (σ1+2σ3)/3   q = (σ1-σ3)
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Selected permanent deformation models
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2 modelling approaches :

• Routine level : utilizable for design
Empirical permanent deformation model

• Advanced level : for research or analysis
Elasto-plastic model with isotropic and kinematic hardening          
Chazallon (2000)

)q,p(g).N(f)N( maxmax
p =ε 1 Gidel (2001)
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Example of calibration of empirical permanent 
deformation model
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Structural modeling approach
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Main hypothesis : For one cycle

Separate modelling of resilient behaviour and permanent deformations

Three steps :

1. 3D Finite Element calculation of the stress fields in the pavement structure 
using the resilient behaviour (non linear elastic,  visco-elastic models) 

2. Use of the stress fields and stress path to calculate permanent strains at the 
different points of the pavement in the vertical transversal plane

3. Calculation of the displacement field (rutting) 

ep ε<<εδ

- FEM method (program ORNI) : 3D structural calculation.
- Simplified method: integration of ε1

p in the vertical direction



Modelling of a full scale experiment
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5 low traffic pavement structures (each 25 m long)
Full scale loading conditions : 65 kN dual wheel load, 72 km/h
1.5 million loads applied
Low water table level ( –2.6 m)

Experiment performed in 2003 on the LCPC fatigue test track



Modelling of structure 4
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Modelling hypotheses
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Modelling of rutting of UGM layer and subgrade (empirical model)
Simulation of load wandering and variations of temperature with traffic

Temperature distribution used for calculations
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Examples of rut depth calculations
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220cm

• Bituminous concrete : linear elastic
• UGM : non linear elastic
+ empirical permanent deformation model
• Soil : linear leastic E = 100 MPa, n = 0,35

Pavement 
structure Loading : 65 kN load (single or dual wheel) 

1.5 million loads - Constant temperature
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Calculation : influence of lateral load wandering
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Comparison of model with experiment
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Conclusions – Modelling of rutting
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• First results encouraging but difficulty to simulate
real in situ conditions (temperature and moisture variations…)

• Models predict a too fast stabilisation of permanent 
deformations 

Perspectives :

- more detailed evaluation of ORNI

- Improvement of the models for unbound materials

- Modelling of permanent deformations of bituminous 
materials


