

Kickoff Meeting: Development of Countermeasure Strategies for Protecting Bridge Girders against Overheight Vehicle Impacts – Phase I

1. Meeting Minutes

Location: Virtual WebEx Meeting

Date: October 16, 2023

Time: 10:00 AM EDT to 11:10 AM EDT

Attendees: B. Benton, R. Bocchieri, V. Chiarito, B. Commander, V. Phan, J. Purdy, X. Qin, D. Soden, L. Warren, and W. Williams

2. Agenda

Item	Time (min)	Lead
FHWA team introductions	5	FHWA
ARA team introductions	5	ARA Team
Project objectives	5	ARA Team
Roles and responsibilities	5	ARA Team
Discuss report review process	5	FHWA
Discuss report requirements	5	FHWA
Task approach and Q/A		ARA Team
Task 1.2: Literature review and synthesis	5	
Task 1.3a: Develop energy absorbing concept systems	10	
Task 1.3b: Develop plan to design and evaluate performance	10	
Task 1.3c: Organize and host a technical panel	5	

3. Discussion

- 1. FHWA Team Introduction
 - Senior Bridge and Tunnel Construction Engineer and Project Contract Officer Representative (COR): Linh Warren
 - Senior Bridge Engineer, Project Technical Lead, and Project Technical POC: Vince Chiarito
 - Security and safety of bridges and tunnels (includes collisions and fire)
 - Structural Engineering Team Leader: Derek Soden
 - Freight Programs Team Leader: Jeff Purdy
 - o Truck size, weight regulations, and oversize and overweight permitting
 - Bridge and Tunnel Engineer and Alternate Technical Lead: Calvin Chong
- 2. ARA Project Team Leads
 - ARA
 - o Project Manager: Bob Bocchieri
 - o Assistant Project Manager: Virginia Phan
 - Project Reviewer: Dan D'Angelo
 - Crash Analysis and Simulation Leads: Bob Bocchieri, Michael Erekson
 - o Prototype Construction and Mechanical Design Lead: Jason Rittenhour
 - Texas A&M Transportation Institute (TTI)
 - o William Williams
 - Structural engineer at TTI. Involved in prototypes, crash-testing, bridges, retrofits
 - GPI
 - o Barry Benton
 - Bridge engineer at Delaware Department of Transportation for 25 years, served on AASHTO Subcommittee for Bridges and Structures, familiar with bridge code, worked with ARA on various FHWA projects
 - University of Wisconsin-Milwaukee (UWM)
 - o Xiao Qin
 - Professor at UWM, Principal Investigator on NCHRP project 08-139 Guide for Preventing and Mitigating the Risk of Bridge and Tunnel Strikes by Motor Vehicle
 - Bridge Diagnostics (BDI)

- Brett Commander
 - Vice President and Principal Engineer at BDI, specialty is instrumentation for structural evaluation and evaluating structural conditions through various NDE techniques
- 3. Project Reports
 - R. Bocchieri, L. Warren, and V. Chiarito to have separate meeting on FHWA publishable report requirements
 - L. Warren has sent R. Bocchieri a package on report requirements for the separate discussion after R. Bocchieri's review
 - ARA has produced those type of documents in the past and has a reviewer in the company for these kind of reports
- 4. Bridge Strikes
 - Video of bridge strike videos including crane hit, which lifts bridge
- 5. Project Tasks and Objectives
 - Project Aims
 - Design and develop a cost-effective energy-dissipative system prototype for mitigating damages to vulnerable bridges girders or support systems
 - o Design full-scale testing program and selection of bridge site for field installation
 - o Custom construction and installation of the full-scale system
 - Full-scale testing and evaluation of the system
 - Phase 1
 - Task 1.2: Literature review and synthesis
 - o Task 1.3a: Develop energy absorbing (EA) concept systems
 - o Task 1.3b: Develop plan to design and evaluate performance
 - Task 1.3c: Organize and host a technical panel
- 6. ARA Project Team Roles in Phase 1
 - ARA
 - Prime Contractor
 - Lead all research, analysis and design efforts and responsible for all deliverables to FHWA
 - Texas A&M Transportation Institute (TTI)
 - Task 1.2: Conduct a literature search
 - University of Wisconsin-Milwaukee (UWM)

- Task 1.2: Identify potential sources based on related research and review of the literature review results
- Task 1.3b: Assist in developing the bridge strike scenarios and plan for performance evaluation
 - Evaluate bridge strike database to identify the bridge type(s) most likely to be hit and to identify the vehicle type(s) or load type(s) most likely to strike a bridge
- GPI
 - o Task 1.3a
 - ID advantages of EA systems proposed based on bridge design and construction expertise
 - Lead the identification of key inspection requirements
 - o Task 1.3b
 - Support design plan for the connections, minimize live load, aesthetic for the three energy absorbing systems to ensure proper installation and to minimize traffic disruption after impacts
- Bridge Diagnostics (BDI)
 - Task 1.2: Advise on advantages/disadvantages with respect to instrumentation and inspection requirements for existing systems identified
 - Task 1.3a: Advise on instrumentation and inspecting requirements for the concept systems developed by the project team
 - Task 1.3B: Advise on instrumentation to measure energy absorption and dissipation performance as well as post-strike inspection and maintenance
- 7. Discussion
 - V. Chiarito
 - Noticed there was a strike beam in the earlier videos
 - The trailers that hit, did not look like much response from the bridge, the trailer box not as stiff as the crane, concerned that mitigation designed for a tractor trailer, but the higher loads coming from the boom crane
 - For the strike beam, the first girder is probably as stiff as the first protective strike beam
 - Maybe the tractor trailer does not cause as much damage to the bridge as the boom cranes and dump trucks
 - J. Purdy
 - A couple of years ago in DC, a pedestrian bridge got completely pulled down by a dump truck that had a raised boom, that happens a lot
 - It seems like the damage done by that type of crash is pretty significant

- There was also a truck hauling a dump truck (oversized load) and caused bridge collapse
- V. Chiarito
 - Shipping container is lot stiffer that tractor trailer, possibility that shipping container is overheight, a lot of shipping containers are moved on the highways
- R. Bocchieri
 - Use bridge strike database to quantify type of bridges getting damaged, what the impactors are and what the corresponding level of damage so we can target our analyses
 - Big variation in load types: wide load distribution, long duration and localized load, short impact
 - A challenge to protect against both, but maybe if something works for localized hit, it will work on low load hit, long duration
- V. Chiarito
 - Reporting aspects lacking, on federal level not required unless it becomes a critical finding
 - Soft hit might not even be reported
- J. Purdy
 - There are systems out there put on bridges that detect when a bridge is hit
 - Not sure if you were thinking of using a system in conjunction with this to notify a crash has occurred
- R. Bocchieri
 - Capture in literature search what those warning systems are currently
 - o From diagnostic side, at least indicator there was a hit
- B. Benton
 - Former bridge owner, don't find out about a lot of hits that happen
 - Think the reason is, when the bridges are hit, they need to be repaired and it costs a lot of money for the insurance companies to repair
- R. Bocchieri
 - Any comments on how the bridge strike database might be biased based on what has been reported
- X. Qin
 - o During nation-wide survey, found that very few states had a bridge strike database
 - The practice of reporting varies
 - Identifying the type of hit or the type of vehicle, only available in crash narratives

- o Crash database is not something you can easily search
- The underreporting is an issue
- Challenging to find the load causing the damage, need the crash narrative to identify
- R. Bocchieri
 - From design side, trying to characterize what's hitting and what we're protecting, ex: what type of impactor
- X. Qin
 - Depends on who reports (law enforcement officers, bridge engineers, traffic engineers), and varies from region to region
- 8. Task 1.2: Literature review and synthesis
 - Comprehensive national/international literature review
 - o Check contacts with DOT
 - Organize into categories for the structural approach for EA
 - Summary of the potential merits of each approach
 - EA capabilities, lifecycle, installation methods, and operating loads.
 - Applicability for different types of bridge girder (e.g., steel, RC I-beam, RC U-shape)
- 9. Discussion
 - V. Chiarito
 - Receptiveness of owners, there was a study in Ohio and there was a concern about liability of part falling down
 - o Included some in scope, except did not include liability
 - R. Bocchieri
 - Try to find out what will drive bridge owners' resistance
 - X. Qin
 - Load carrier perspective very hard to get opinions, or keeping good record
 - Bridge owner perspective survey did not specify liability.
 - After raising bridge height, received more hits, because truckers know this route is more passable
 - J. Purdy
 - Another type of strike: low railroad bridges, or longer trucks topping out
 - R. Bocchieri

- Need to put something completely different than front of girder if being hit from underneath (lose more height)
- Need to focus on strikes to the front face, but even with the crane hit, there is a lifting mode of the bridge
- X. Qin
 - Hard to tell whether highway or railroad bridge hit (two separate databases)
 - Crash database will not tell whether railroad or highway bridge
 - Many state DOTs do not have location of railroad bridge, not part of national bridge inventory
- 10. Task 1.3a: Develop energy absorbing concept systems
 - Development of Potential Concept Systems
 - Adjustable crush force
 - o Good actuation with high off-axis loading
 - o Good structural stiffness/strength in general service
 - o Maintains structural integrity and do not create debris post-actuation
 - Proven performance at high loads and stroke rate
 - Easily replaced after actuation
 - Withstand harsh environments
 - Discussion
 - o V. Chiarito
 - Be very open to beyond honeycomb aluminum, such as structural foam
 - Another idea: water. If water freezes, can add denatured alcohol to keep from freezing.
 - Honeycomb needs to be confined and surrounding the material in something stronger. Example, confining concrete with steel plates
 - Confirmed yes, focus will not be changing the structure of the bridge
 - o R. Bocchieri
 - Success in the past using honeycomb aluminum when confined
 - Maybe a combination of technologies
 - Assumption is that the focus will be not changing the structure of the bridge to encourage adoption
 - o W. Williams
 - Need to sandwich honeycomb between two stiff membranes
 - Concept Ranking

- EA performance with consideration for weight (e.g., specific performance)
- o Commercial off the shelf (COTS) or custom
- o Cost (including construction, maintenance, and lifetime)
- o Structural (e.g., crush element) or non-structural
- Need for confinement in off-axis loading (e.g., HC, inversion tubes, etc.)
- o Difficulty of design, analysis and experiments
- o Ease of construction, maintenance and ease of replacement
- o Environmental
- Use as retrofit or new construction
- Discussion
 - o R. Bocchieri
 - Retrofit vs. new construction?
 - o V. Chiarito
 - Most of these solutions may be for retrofit conditions
 - Assume in new construction, the retrofits will still apply
 - Minimize modifications to the bridge girder and the bridge itself
- Inspection Requirements
 - connections, supports, anchors, fatigue cracking, corrosion, coatings, and collision damage
- Post-event Evaluation
 - Potential debris
 - o Estimate of the quantity of material that could be displaced
 - Estimate of the equipment and manpower necessary for clean-up
 - o Replace or reuse
- 11. Task 1.3b: Develop plan to design and evaluate performance
 - Evaluate Available Bridge Strike Data
 - Define Threat to Bridges Through Bridge Impact Analysis
 - Metrics for energy absorption and damage reduction
 - EA structure resilience and restoration
 - Inspection, Maintenance, and Life cycle costs
- 12. Schedule
 - No comments made

- 13. General Discussion
 - V. Chiarito
 - Group awareness of publication Transportation Pooled Fund Study TPF-5(462)
 "Assessment and Repair of Prestressed Bridge Girders Subjected to Over-Height Truck Impacts (OHTI)
 - o https://www.pooledfund.org/Details/Study/689
 - https://www.bing.com/ck/a?!&&p=4f5f7ddbda47cc27JmltdHM9MTY5N zUwMDgwMCZpZ3VpZD0yOWJmNDEwZi11NDNkLTZiZjEtMzk0NC 01MGU3ZTU1MjZhZGImaW5zaWQ9NTE4NA&ptn=3&hsh=3&fclid=2 9bf410f-e43d-6bf1-3944-50e7e5526adb&psq=TPF-5(462)+Assessment+and+Repair+of+Prestressed+Bridge+Girders+Subjec ted+to+Over-Height+Truck+Impacts&u=a1aHR0cHM6Ly93d3cucG9vbGVkZnVuZC5 vcmcvRG9jdW11bnQvRG93bmxvYWQ_aWQ9ODgyNg&ntb=1
 - If this group has any questions about this publication/project, V. Chiarito can forward questions to that research team
 - From risk assessment point of view, do insurance companies accept the cost of the repair, or is it more cost effective to install mitigation?
 - R. Bocchieri
 - This project can provide insight on the cost of repair associated with various types of damage and what type of damage is acceptable or repairable

4. Action Items

- 1. R. Bocchieri to review reporting requirements package sent over by L. Warren
- 2. R. Bocchieri to set up separate call on reporting requirements between R. Bocchieri, L. Warren, and V. Chiarito

