

View/Print Report

CTS Project Number: 2008077

Project Title: Investigation of Low Temperature Cracking in Asphalt Pavements: National Pooled Fund Study Phase

Η

Reporting Period: Jan 1 - Mar 31 (2011)

Update 1: Tasks

Task Number 1

Title: Update on low temperature cracking research

Description: A brief literature review will be performed to document any new research in the

area of low temperature cracking, including the work performed by the Asphalt

Research Consortium research team. Details of the MnROAD test cells

constructed in 2007 and 2008 in relation to low temperature cracking will be provided. In addition, test specifications from Canada & Europe that may be similar to the current DCT and SCB tests will be documented, as well as any modifications to the SCB and DCT tests that have been done since the end of

Phase I.

Deliverables: Quarterly task reports

Due Date: 12/17/2008

Date Approved 02/08/2010

Date Delivered: 01/08/2010

Progress: No progress reported for this quarterly report.

% Complete: 100%

Task Number 2

Title: Expand Phase I test matrix with additional field samples

Description: Nine new asphalt mixtures used in field studies will be tested and analyzed with

respect to their low temperature cracking resistance. The research team is proposing the following seven mixtures plus two additional mixtures from Wisconsin and New York. The tests will consists of IDT creep and strength tests as well as SCB and DCT fracture tests. The experimental variables that are important in differentiating low temperature cracking mix performance are test temperature, long-term aging or mix conditioning, and mix air voids. The proposed experimental plan for establishing the proposed low temperature cracking criteria is shown in the table below. The initial validation plan detailed in the table above consists of performing 54 tests per mixture for a total of 486 tests. All nine mixtures will be DCT tested at UIUC laboratory, and SCB and IDT tested at UMN laboratory, respectively. For three of the nine mixtures, DCT tests will be also performed at UMN and SCB test will be also performed at UIUC; Iowa State will perform a limited number of tests (SCB and/or DCT), if equipment becomes available. All laboratories will provide a detailed QA plan to

ensure the accuracy of the test results. The progress of this work will be presented periodically at the Expert Task Group meetings, and it is expected that, at the end of Task 2 or subtask II of Task 3, a round robin will be initiated through ETG mechanisms, at no cost to the current project, to obtain precision and bias information on the fracture test methods. The laboratory test results will be correlated to the low temperature cracking field performance of the MN/Road mixes. This plan will determine which device is best and the best temperature, mix conditioning, and air void level for establishing the low temperature specification criteria. The research team envisions that there will be two levels of specification consisting of simply a mix criteria and a more advanced one using models. The more advanced specification will consist of additional mix testing beyond that of the mix design criteria for use in the developed advanced models. Subtask on Physical Hardening (See work plan for details)

Deliverables: Quarterly task reports

Due Date: 05/17/2010
Date Approved 12/08/2010
Date Delivered: 12/01/2010

Progress: No progress reported for this quarterly report.

% Complete: 100%

Task Number 3

Title: Develop low temperature specification for asphalt mixtures

Description: The main objective of this work is the development of low temperature

performance specification for asphalt mixtures. Currently, the simple performance test provides the parameters needed to predict the intermediate and high service temperature performance. There is a need for a similar test to fill the gap in the low temperature range. In order to accomplish this goal the following subtasks will be performed: Subtask 1? develop test method (see work plan for details) Subtask 2? develop specification (see work plan for details) Subtask 3? propose simplified method to obtain mixture creep compliance (see work plan for details) The primary outcome of task will be the development of a simple mixture design specification, based upon mixture fracture testing and Superpave low-temperature binder test data, to control thermal cracking. It is not anticipated that the specification will involve the use of a computer program as part of routine design. However, the improved TCMODEL program to be developed under Task 4 will be used to choose

specification parameters and to set specification thresholds. An optional, more rigorous specification, which will require running the TCMODEL program, will be

developed under Task 4.

Deliverables: Quarterly task reports

Due Date: 11/17/2010

Date Approved

Date Delivered:

Progress: More progress was made to finalize this task.

An evaluation of the SCB and DCT testing methods was performed and it is expected that the team will propose a single fracture test at the beginning of

the next quarter.

For subtask 2, calculations are in progress to determine if the binder PG limiting

criteria translate into similar values for asphalt mixtures.

Progress was made in subtask 3. It is not clear at this time if creep can be obtained from DCT or SCB tests. It may be necessary to run a separate creep test prior to fracture testing to obtain this information. However, the creep tests on thin mixture beams have shown a lot of promise.

Date: 04/12/2011

% Complete: 85%

Task Number 4

Title: Develop Improved TCMODEL

Description: TCMODEL is a computer program developed under SHRP and later revised and

adopted for the M-E PDG that predicts transverse cracking versus time based upon hourly air temperatures, HMA creep compliance and tensile strength from the IDT (AASHTO T 332), HMA thermal coefficient, and other pavement layering information. Phase I of the study demonstrated the benefits of the mixture fracture energy measurement as compared to mixture tensile strength, particularly for polymer-modified mixtures. TCMODEL will be enhanced in Phase II (?NewTCMODEL?) to better capture the true fracture properties of hot-mix asphalt. The resulting program will be used to guide the specification design team in the development of a simple specification for the control of thermal cracking based upon a mixture fracture test and standard Superpave binder test results. The program will also be delivered as part of an optional rigorous thermal cracking design specification, where the running of NewTCMODEL is part of the design specification. This system will bear similarity to the M-E PDG, although it will use mixture fracture tests instead of tensile strength and will have an improved fracture model (cohesive zone fracture model instead of the Paris law model). Climatic files for participating states (3 climatic zones per state) will be developed and included in the software for a range of asphalt layer thicknesses. The TCMODEL program will be made available as a freeware program, to be posted on University, FHWA, and State DOT websites. The program and an accompanying user?s manual will be bundled with the final report. In addition, UIUC researchers will work with other university team members to conduct a preliminary calibration and validation of the new model at the end of the second year of the study. Data from phase I project, along with new data generated from the Mn/ROAD project will be used to calibrate and validate the accuracy of the new model. Direct comparisons to the existing TCMODEL code will also be made. Subtasks will be performed if additional

funding becomes available (see work plan for details).

Deliverables: Quarterly task reports

Due Date: 05/17/2011

Date Approved

Date Delivered:

Progress: Steady progress was made on Task 4 of the low temperature cracking study

during the past quarter. The tasks invovling software code integration, debugging and verification were continued, building on the work completed during the previous quarter. The integrated viscoelastic bulk and cohesive zone fracture analysis code continues to be verified. The individual components of

the code have already been verified.

Progress was made on developing algorithms for improving the computational efficiency of the low temperature cracking prediction model during the past quarter. At present, an algorithm comprising of a simplified analytical solution to identify critical cooling events is under development. By conducting finite

element simulations of the pavement during critical cooling events, significant reduction in run-times is anticipated to be achieved.

Date: 04/12/2011

% Complete: 98%

Task Number 5

Title:

Modeling of Asphalt Mixtures Contraction and Expansion Due to Thermal Cycling

Description:

The main objectives of this task are: 1. Expand the data base for thermovolumetric properties of asphalt binders and mixtures to a wider range of modified asphalts and types of mixtures to fully quantify the effects of binders and aggregates in the asymmetrical thermo-volumetric behavior (glass transitions and coefficients). 2. Develop a micromechanics numerical model that can be used to estimate the glass transition temperatures and coefficients from mixture variables commonly measured for binder grading and for mixture design. 3. Conduct thermal cracking sensitivity analysis to determine which of the glass transition parameters (6 parameters) are statistically important for cracking, which ones need to be measured, and what is the effect of used estimated values rather than measured values. This task will be coordinated with the WRI Asphalt Research Consortium (ARC) project. The ARC is currently involved in modifying the TG instrument to make it more user friendly. The ARC project is also looking at the effect of aging and effect of cooling rates. Although different mixtures are used, the concepts remain the same and the effect of aging and cooling/heating rates will be used to define what the critical factors for thermal cracking are and which material properties need to be used in modeling and in specification.

Deliverables: Quarterly task reports

Due Date: 05/17/2011

Date Approved

Date Delivered:

Progress:

The research team continued efforts on thermal cycling modeling and testing of MnROAD asphalt mixtures. The development and implementation of a new device to measure thermo-viscoelastic behavior of asphalt materials for low temperature cracking characterization was completed last quarter. The Asphalt Thermal Cracking Analyzer (ATCA), denoted as Tg-TSRST in previous quarterly reports, can simultaneously test two asphalt mixture beams:

? An unrestrained specimen from which the change in length with temperature, and consequently the glass transition temperature (Tg) and coefficients of thermal expansion/contraction (al and aq) are measured.

? A restrained specimen which is used to measure thermal stress buildup.

In this quarter, asphalt mixture beams from MnROAD were tested using thermal cycles (i.e., cooling followed by heating) in the ATCA device. The temperature was cycled between +30?C and -70?C three times.

Restrained beams were also tested using the ATCA to investigate the effect of cycling as well as isothermal conditioning on thermal stress buildup and relaxation. Figure 3 shows three cycles of thermal loading between 30?C and -20?C. The samples were kept at isothermal conditions at -20?C for 2 hours before heating to 30?C.

These studies will continue next quarter as more samples will be tested to measure the relative change in behavior for the different mixtures. In addition,

4/28/2011 5:10 PM

detailed numerical modeling will be conducted to measure the effect of binder physical hardening on this asymmetrical thermal stress build up and relaxation. Some of this future work is done in collaboration with the Asphalt Research Consortium project.

Date: 04/12/2011

% Complete: 85%

Task Number 6

Title: Validation of new specification

Description: Based upon the outcomes of the testing of the preliminary validation

experimental plan, the best test device and method of conditioning mixes for long-term aging will be selected for the final validation. The final validation will be based upon testing of the 11 Olmstead County, Minnesota mixes placed in the 2006 construction season. The testing will be at the low performance grade temperature as well as at 10?C above the low temperature performance grade. The mixes will also be tested in triplicate at both 4 and 7 percent air voids. Based upon the outlined test parameters and the two air void contents for the 11 mixes, a total of 132 samples will be tested in the final validation component of this study. The other test sections that will be used as part of the validation process in year 3 of the project are listed below. The IDT will be performed only in this task and IDT creep compliance data will be used to develop and validate new method to predict mixture creep compliance from Bending Beam Rheometer (BBR) binder creep compliance, as described in task 3.

Quarterly task reports

Due Date: 05/17/2011

Date Approved

Deliverables:

Date Delivered:

Progress: All validation specimens were compacted and preliminary tests were performed.

Although not required, both SCB and DCT testing will be performed on the

eleven validation mixtures.

Date: 04/12/2011

% Complete: 40%

Task Number 7

Title: Development of draft AASHTO standards and Final Report

Description: A final report containing the updated reports from task 1 to 5 will be delivered

at the end of this task. The report will also contain the following: -Access database containing all the experimental results as well as additional

information on the field samples and laboratory prepared specimens -Proposed test protocols (experimental set up and data analysis) for selecting asphalt binders and mixtures with enhanced fracture resistance to low temperature thermal cracking -Software and documentation describing a new fracture mechanics-based thermal cracking program (improved TCMODEL). Stand alone

program and user manual will be provided.

Deliverables: Draft final report

Due Date: 10/17/2011

Date Approved

Date Delivered:

Progress: Nothing to report.